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Abstract

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) aims to disentangle multiple biological signal
sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI
model development has been dominated by brain applications. More recently, advanced methods with high fidelity
to histology are gaining momentum in other contexts, e.g., in oncological applications of body imaging, where
new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in
body imaging (i.e., not including the nervous system) in oncology, and to analyse its value as compared to refer-
ence co-localised histology measurements, given that demonstrating the histological validity of any new DW-MRI
method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard
Apparent Diffusion Coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, mi-
crostructural parameters, and relationship with histology. Pre-clinical, clinical and in/ex vivo studies were included.
The most used techniques were Intravoxel Incoherent Motion (IVIM, 36.3% of used techniques), Diffusion Kur-
tosis Imaging (DKI, 16.7%), Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors (VER-
DICT, 13.3%), and Imaging Microstructural Parameters Using Limited Spectrally-Edited Diffusion (IMPULSED,
11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-
relaxometry. The reviewed approaches provide histologically-meaningful indices of cancer microstructure (e.g.,
vascularisation/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity
to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-

scanner robustness, and on assessing histological validity in broader contexts.
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1 Introduction

Diffusion-weighted (DW) Magnetic Resonance Imaging (MRI) detects signals that encode water diffusion in the
body. Its ultimate goal is the estimation of the tissue microstructure that determines diffusion patterns, i.e., statistics
of biological properties at the ~ 1-100 pum length scale, from sets of MRI signal measurements [1} [2]. Motion-
probing gradients are used to encode salient characteristics of water diffusion in tissues into the MRI signal. The
classical DW-MRI experiment is based on the Pulsed Gradient Spin Echo (PGSE) sequence, also known as the
Stejskal-Tanner experiment [3]], Single Diffusion Encoding, or Linear Tensor Encoding (LTE) [4] with PGSE wave
forms. The idealised PGSE experiment is illustrated in Fig. 1, in which motion-probing magnetic field gradients
are placed on either side of a spin echo refocussing pulse. Several approaches have been proposed to enable mi-
crostructure estimation, and the latest methods entail rich acquisitions coupled with sophisticated signal modelling
(Appendix A).

A number of recent articles have reviewed the state-of-the-art of DW-MRI applications [SHS]]. However, these
tend to focus heavily on brain imaging, especially in neurological or psychiatric disorders, and reviews in contexts
of body imaging in oncology are limited [9H11]], despite the rapidly growing amount of research in this field.
Moreover, while DW-MRI is intimately related to histology, recent reviews do not typically assess the techniques
taking into account their actual histological validity and histopathological specificity. Histological validation is
a key step in the development of any new DW-MRI technique, as it is essential to assess the implication of the
modelling assumptions, and to confirm that the method is actually sensitive and specific to the histopathological
characterisitcs that it intends to measure [2].

Given the importance of linking DW-MRI measures with the underlying tissue histology, the objective of this
paper is to review the state-of-the-art of DW-MRI in the context of oncological body imaging (beyond the central
nervous system, i.e., mainly abdominal and pelvic imaging), with an emphasis on their value in the assessment
of microstructure as compared to reference histopathology. We specifically aimed to provide an overview of the
landscape of advanced DW-MRI methods that extend Apparent Diffusion Coefficient (ADC), focussing on tech-
niques whose indices have been compared to histology in oncological body imaging. In doing so, we took a mainly
narrative approach, while also presenting some quantitative information from the articles. This was related to the

application area (anatomical, cancer type), scanning settings, and level of correlation histology.

2 Methods

2.1 DW-MRI technique selection

Given the high number of DW-MRI methods used to assess microstructure and the variety of approaches followed to
relate DW-MRI and histology, we carried out a literature search in PubMed to guide the selection of the techniques in

this review. The search aimed to identify techniques that are relevant to body imaging, and that offer sensitivity to the



underlying tissue histology (search query: Appendix B). The search adhered to the Preferred Items for Systematic
Reviews and Meta-analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines [[12] and was performed on
September the 8th 2023.

Inclusion criteria were: (i) primary study, (ii) English language, (iii) report an application of DW-MRI, (iv)
the DW-MRI technique provides a direct estimate of a microstructural property, or offers some markers that extend
routine Apparent Diffusion Coefficient (ADC) (so that they rely on a signal model with more tissue parameters than
simple ADC), (iv) focussed on pre-clinical, clinical, in/ex vivo oncology studies (studies that compared DW-MRI
metrics from animal or human cancer cells or tissue, scanned either in vivo or ex vivo, and then compared to metrics
derived from microscopy performed on the same specimens after MRI), (v) focussed on body imaging (that is, on

applications that do not include imaging of the nervous system).

2.2 Technique application and MRI-histology correlation assessments

We screened all included articles and recorded the MRI scanner used, the tissue condition during MR imaging,
the area of application, as well as correlation coefficients between any DW-MRI and histological metric, whenever

reported.

2.3 Narrative description of the selected techniques

For each identified technique, we described i) signal model, ii) required diffusion encoding protocol, iii) fitting
methods, iv) main histological correlates, and finally iv) discussed its strengths and weaknesses. Note that with
both signal “model” and representation” we mean a functional form capable of predicting the diffusion MRI sig-
nal for a variety of possible diffusion protocols given a set of tissue parameters, which can be estimated through
fitting from sets of DW-MRI measurements. In the case of models, these parameters typically refer to histological
characteristics, such as cell size or cell density. Tissue parameters in signal representations instead are apparent
phenomenological properties that are sensitive to different histological characteristics at once, and typically change

when the diffusion encoding gradient timings vary (e.g., apparent diffusion coefficient or kurtosis).

3 Results

3.1 DW-MRI technique selection

354 articles were identified. 87 articles were excluded based on title and abstract. Of the remaining 267 articles,
238/267 focused on the use of techniques that compute indirect measures of microstructure; 29/267 focused on
techniques that provide direct estimates of histological properties. Of the former, 213/238 were excluded as they
either did not report any comparison to histology, or, if they did, only for ADC'. 54/267 articles were finally included

in this review. Fig. 2 summaries graphically the article screening process.



The following techniques were identified: Diffusion Kurtosis Imaging (DKI), Intravoxel-incoherent motion
(IVIM) imaging, Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors (VERDICT), Imag-
ing Microstructural Parameters Using Limited Spectrally-Edited Diffusion (IMPULSED), Stretched Exponential
Model (SEM), g-space imaging (QSI), MRI-cytometry, Restriction Spectrum Imaging (RSI), Monte Carlo (MC)
simulations for microstructural mapping from clinical DW-MRI, Multidimensional Diffusion MRI (MDD-MRI),
Hybrid Multidimensional MRI (HM-MRI), Diffusion-Relaxation Correlation Spectrum Imaging (DR-CSI), mpMRI-
based Artificial Intelligence (AI). Some articles focussed on more than one technique.

A summary of the included techniques is given in Table[T]and Fig. 3. Techniques are grouped as phenomeno-
logical, when they parametrise the signal to surrogate parameters that do have a direct microstructural counterpart

(e.g., diffusion kurtosis), or biophysical models, if they estimate specific histology features (e.g., cell size).

3.2 Technique application and MRI-histology correlation assessments

Supporting Information Tables 1-7 report in detail information on the MRI scanner and DW protocol, tissue con-
dition during MR imaging, area of application, and information on the correlation of MRI metrics to histology for
all 54 articles. This information is also included as a structured CSV data set in Supporting Information Data 1.

Fig. 4 visualises graphically information on the MRI-histology applications extracted from the selected articles.
The figure shows that in most studies (about 60%), 3T MRI scanners were used (Fig. 4.A). Human tissue was used
in 60% of cases, followed by mouse tissue in almost 30% of the experiments (Fig. 4.B). In the vast majority of the
experiments (roughly 80%), tissues were imaged in vivo, while ex vivo imaging (of either fresh or fixed tissue) was
performed in 13% of the experiments (Fig. 4.C). Finally, the analysis of the included articles reveals that the cancer
application that were investigated varied considerably (Fig. 4.D). The three most commons areas of interest were,
in decreasing order, cancers of the prostate (23% of the experiments), breast (16.4% of the experiments) and liver
(14.8% of the experiments).

Tables 2 and 3 report correlation coefficients between DW-MRI metrics and histology (Table 2: DKI and
IVIM metrics; Table 3: all other techniques). Correlations vary from weak (e.g., » = 0.22 for SEM parameter
« with nuclear-to-cytoplasm ratio) to strong (e.g., 7 = 0.92 for IMPULSED cell diameter d with histology-derived
cell size). Moreover, for some metrics correlations are not always consistent across studies (e.g., r = 0.78 and
r = —0.41 for IVIM D* and microvessel density), while for others they are (e.g., DKI ADCg or SEM D; are
consistently negatively correlated with metrics of cellularity or cell count). Promisingly high correlations are, for
example, those observed in prostate cancer for diffusion-relaxation methods (r of 0.67 and 0.90 between MRI and

histological prostate lumen fraction).

3.3 Narrative description of the selected techniques

This section describes the advanced DW-MRI techniques that were used in the 54 articles included in this review,

discussing the key metrics that each technique provides.



3.3.1 Diffusion kurtosis imaging

Ten articles report on Diffusion Kurtosis Imaging (DKI) [[13H22] (Supporting Information Table 1 for all but [20-
22]], which are reported in Supporting Information Table 2 [20} 21]] and 5 [22]], being these articles focussed on
more than one DW-MRI technique). DKI is a technique based on the diffusion signal cumulant expansion [23]],
and was proposed by Jensen et al. in 2005 to characterise non-Gaussian diffusion arising from presence of multiple

water pools with different diffusivities, restriction, water exchange, or combination of those [24].

Signal model The DKI signal representation is
1
S = Spexp (—bADC'k + g K(bADC’k)Q) . (1)

Above, S is the signal and b is the b-value. Unknown parameters are the non-DW signal level Sy, an ADC metric
ADC, the excess kurtosis K (K = 0 for Gaussian diffusion) and the non-DW-signal Sy. ADC}, is a corrected
estimate of ADC' as compared to a first-order description S = Sy exp (—b ADC) (for sufficiently low b-values,
ADCy, =~ ADC, K =~ 0). K is unitless; the larger | K|, the stronger the departure from Gaussian diffusion (i.e.,
from mono-exponential signal decay). Negative K is possible, but rarely measured. In some articles, a full tensor fit
is performed, and Eq. [T]is generalised to account for anisotropy in apparent diffusivity and apparent kurtosis across
3D spatial directions [[18}[19]. In those cases, the authors typically focussed their analyses on mean diffusivity and

mean Kurtosis, which here were then taken as proxys for ADC}, and K in Table[2]

Required diffusion encoding protocol Clinical DKI is based on PGSE (i.e., LTE), with 3 mutually-orthogonal
gradient directions at b-values up to approximately 1000-2000 s/mm?. The measurement regime where estimating
K becomes relevant depends on the microstructure. Typically, K cannot be neglected when the estimated ADC
starts to become dependent on the maximum b-value. Signals from the 3 directions are averaged (either geometri-
cally or arithmetically) and scalar kurtosis evaluated, rather than full tensors (required in tissues such as muscles and
white matter), due to low anisotropy. To estimate Sy, ADC} and K, sampling at least 3 b-values up to 1000-2000

s/mm? is required.

Fitting methods The included articles used voxel-wise, non-linear least-squares fitting, which were implemented

in MATLAB [13}114].

Main histological correlates DKI-parameters are not direct estimates of microstructural properties as cell size/density.
Nonetheless, they are sensitive to several different biophysical characteristics, and can serve as indirect markers
of microstructure. In four articles, K or full tensorial mean kurtosis were tested for correlation to cellularity
(L3} (14} [18} [19], with mixed results. In a study on ovarian cancer [13]] cellularity correlated with K; in hepato-

cellular carcinoma (HCC) [[14]] and in a rabbit VX2 bone tumour model [[18]], it did not. Since K reflects diffusional



heterogeneity, it is possible that such variable correlations with cellularity reflect, at least in part, intra-voxel het-
erogeneity in cell-density [25]]. Intra-cellular fraction from histology and other tissue component fractions were
compared to K in renal cell carcinoma and prostate [[16}[17], and results varied (correlation not always seen).

ADCY or full tensorial mean diffusivity exhibited similar correlations as K with cellularity, but inverse. It
was found to have a significant inverse correlation with cellularity [[L3, |18l [19]], and tissue composition fractions
[16l [17]. Combining ADC}, and K resulted in an even stronger correlation to cytoplasm, cellular, and stromal
fraction [17].

Rosenkrantz et al. [14] found weak correlations among ADC, ADC} and K, implying that K may offer
complementary information, even if fully biologically-specific. This is supported by the fact that non-Gaussian
diffusion was seen in all HCC cases (K > 0.5). K exhibited a higher Coefficient-of-Variation (CV) than ADC,
reflecting higher sensitivity to diffusion heterogeneity, but also potentially higher sensitivity to noise.

Grussu et al. [15] mapped ADC), and K to intra-cellular diffusivity and volume-weighted cell size at fixed
diffusion time in fixed mouse livers. Cell size estimates were not accurate, but captured between-sample contrasts

seen on histology.

Discussion The main advance of DKI is that it extends routine ADC mapping to account for non-Gaussian diffu-
sion, which is quantified by the kurtosis excess K. DKI enables the description of a wider b-value range compared
to ADC measurement, as it enables accounting for departures from mono-exponential signal decay. Nonetheless,
DKI also has several limitations, and its practical implementation can be challenging. In order to accurately esti-
mate the kurtosis, higher b-values than those typically acquired in the clinic are required, resulting in longer echo
times and overall worse signal-to-noise ratio (SNR), as well as longer diffusion protocols, which may increase the
sensitivity to motion. The higher requirements compared to ADC mapping are a limitation of virtually all advanced
techniques described here, and will be given as understood when introducing the next techniques. Moreover, the
estimation of the kurtosis can be ill-defined as ADC}, goes towards zero. Finally, changes in the kurtosis excess K
can be due to several, different independent changes in tissue microstructure, which may be difficult to tell apart,

e.g., changes in cell size, cell density, voxel heterogeneity, or water exchange.

34 IVIM

Intravoxel-incoherent motion (IVIM) imaging was the focus of 20 articles [20, 21, 126-43]] (Supporting Information

Table 2). IVIM was originally proposed in 1986 by Le Bihan et al. [44].

Signal model IVIM models two water pools (bi-exponential signal model). One describes signal from perfu-
sion within randomly-oriented fluid-filled conduits (e.g., capillaries, blood vessels, tubules), while the other true

diffusion in non-vascular tissue [44].



The overall magnitude signal attenuation in IVIM is written as
S = S, ((l—f) etPr 4 fe*bD*)_ @)

Above, S and S, are the same as in Eq. f is the pseudo-diffusion (vascular) signal fraction (intrinsically
relaxation-weighted), D, is the tissue ADC, and D* is the pseudo-diffusion ADC (D* > Dy, ranging in 10-100
pm?/ms), and can be notated as D or D,, for “pure”. Recently, Eq. has been extended to incorporate T2-effects

[45]] or to capture non-Gaussian diffusion [21} 46] (joint IVIM-DKI).

Required diffusion encoding protocol Body IVIM protocols typically require LTE with 3 mutually-orthogonal
gradient directions at various b-values. Low b-values (up to approximately 100 s/mm?) are densely sampled, and
additional b-values are acquired up to approximately 1000 s/mm?. Signal from the 3 directions are averaged. The

number of b-values used in the included articles ranged from 5 to 11.

Fitting methods The choice of the fitting algorithm can significantly influence the quality of IVIM maps. Bar-
bieri et al. [47] compared six algorithms for IVIM fitting in abdominal imaging (Appendix C, Table 3). Bayesian-
Probability (BP)-based fitting provides the highest precision and accuracy, and minimises inter-reader/-subject vari-
ability. ”Two-step fitting” is used in [20} 121}, 137} 140], but without further specifications. Two articles use Levenberg-

Marquardt (LM) fitting [30} 135]]. Hecht et al. [30] described the fitting procedure in detail.

Main histological correlates The IVIM-parameters of the non-vascular diffusion component are often employed
as markers for cellularity, while pseudo-diffusion indices are used as markers of microvessel characteristics. In five
articles [20, 27,131} 132} 140}, a correlation between D; and cellularity or related measures was found. However, in
three articles [21} 29] [30]], no significant correlation was found. In one study both D; and ADC' were computed;
the correlation with cellularity was stronger for D, [27]. These findings were however not supported by four other
studies [21} 126, 291 31]].

Conversely, f and D* rarely correlated with cellularity, although some weak correlation with the level of necro-
sis was seen in [42]. In [43]], a negative correlation between both f and D* with liver cell size following hepatectomy
was reported. Correlation with measures of vessel density was tested in thirteen articles. In ten articles, a significant
correlation was reported [29} [33H37, [39H42]], while in three no correlation was found [21} 130, [31]. For example,
f and D* correlated positively with Microvessel Density (MVD) [41},142]]. D* also correlated positively with the

Pericyte Coverage Index (PCI), while D; correlated negatively with the Vasculogenic Mimicry (VM) [41]].

Discussion IVIM enables the joint estimation of tissue diffusion properties as well as characteristics of the local
microvasculature, which may be useful in a variety of oncological applications, being abnormal vasculature a key
characteristics of cancer. However, the practical implementation of IVIM in real-world clinical contexts faces a

number of hurdles.
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Firstly, a large number of b-value measurements are required. If one wants to accurately characterise both
true-diffusion/pseudo-diffusion components, very long acquisitions may be required.

IVIM oversimplifies the true microstructure, as it models only two compartments, pooling all non-vascular
contributions into a surrogate tissue component. Also, it does not account for inter-compartment exchange [48]],
compartment-wise relaxation [45] and diffusion time dependence [1]. Because of this, IVIM parameters may be
considered semi-quantitative.

Moreover, the included articles demonstrate clearly that there is currently a lack of standardisation of both
fitting procedure and acquisition protocol, which may be one of the leading factors behind the relatively poor
reproducibility of IVIM metrics.

Finally, several studies [30-34] report that [IVIM-parameters do not perform well in terms of repeatability (es-
pecially f, D*). Flow-compensated acquisitions improve [IVIM robustness [49,[50], but may not be available in all

scanners. Efforts are also ongoing to optimise the clinical protocol and facilitate standardisation [51]].

3.5 VERDICT

Eight articles reported on VERDICT [52H59] (Supporting Information Table S3). This model was originally pro-
posed by Panagiotaki et al. (2014) [55].

Signal model VERDICT is a biophysical, multi-compartment model fitted on DW-MRI measurements acquired
at varying b-values, diffusion times and gradient directions with standard linear tensor encoding (PGSE). The model,
developed on colorectal cancer xenograft mice [55]], has shown utility in vivo in prostate imaging [60] and in other
contexts (e.g., rhabdomyosarcoma).

VERDICT models three non-exchanging water pools:
» water in the intra-cellular space (restricted diffusion within spherical cells);

e water in the extra-cellular extra-vascular space (EES) (hindered diffusion in stroma and lumen, outside

cells/vessels);
» water in the vascular compartment (pseudo-diffusion within blood vessels/tubules).

The total signal is written as

S = SO (fzc Sic(dicv R) + fEES' SEES(dec) + fvasc Svasc(duasc) ) . (3)

Above, b is the b-value; d;c ec vasc are the intrinsic diffusivity of the intra-cellular space (d;.) and the EES/vascular
ADCs (dec/dyasc)- R is cell radius, while the fic s vasc are relaxation-weighted signal fraction (f;. + fers +
fvase = 1). Arecent article by [59]] extended the VERDICT model (relaxation-VERDICT) to account for compartment-

wise relaxation properties.
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Required diffusion encoding protocol VERDICT requires a rich PGSE protocol with several b-values and dif-
fusion times (i.e., varying A/d). The different diffusion times may be sampled at the expense of varying the T'F,
a fact that has been exploited in recent relaxation-VERDICT [59]. Sampling different diffusion times at different
diffusion-weighting strengths provides sensitivity to cell size and cellularity due to restriction (intra-cellular space)
or tortuosity (extra-cellular space), a phenomenon known as time-dependent diffusion (TDD) [L1].

Recently, Double Diffusion Encoding (DDE) VERDICT (made of two consecutive PGSE blocks; Appendix A)

improved f;. and R estimation [54]].

Fitting methods VERDICT is generally fitted with fpgg, fic, R as free parameters (fyqsc = 1 — fic — feES)
and djc cc vasc fixed (and d;c = d..), using an iterative optimisation procedure [52| I55, |57]. The optimisation
is non-linear, via LM algorithm (see Table 4] Appendix C). VERDICT can also adopt different compartment-
wise anisotropy, depending on the cancer type [55} 157, 161]: optimal compartment shape has been investigated
with the Akaike Information Criterion (AIC) [S3]. Accelerated Microstructure Imaging via Convex Optimization
(AMICO) fitting was used to speed up signal processing, without jeopardising fitting accuracy [52]]. An article
[62] reported a method based on General Adversarial Networks (GANSs) to synthesise VERDICT parameters from
routinely acquired DW-MRI, suitable for ADC mapping. Methods of this type may be useful in clinical settings, but
should be interpreted with care: microstructural information that is not encoded in the signal cannot be retrieved.
The recent relaxation-VERDICT implementation was instead fitted using DNNs [59]], resulting in lower metric

variability, higher scan-rescan repeatability and higher accuracy in parameter estimation.

Main histological correlates All included articles were on prostate cancer, except for one on rhabdomyosarcoma
[54] and one on colorectal cancer [55]. In the included articles, low/high f;. was found to mirror areas of low/high
cellularity [53]], a promising finding for potential applications in clinical trials. R was shown to be highly variable in
areas of high lumen density. The quantitative comparison between VERDICT parameters and histology showed that
VERDICT parameters are correlated with their histological counterparts [55]], and the level of agreement increases
when tissue shrinkage due to histology processing is taken into account. Importantly, it can discriminate Gleason
grades. The classical VERDICT implementation distinguishes benign prostate lesions from Gleason grade 3+3,

and 3+3 from 3+4. In additional, relaxation-VERDICT also distinguishes 3+4 from 4+3 or higher [59]].

Discussion In three studies, a comparison was executed between VERDICT, ADC, IVIM, and DKI [55} 57} 60].
The most important benefit of VERDICT over the other techniques is that VERDICT describes specific histological
factors, while the others provide surrogate indices of tissue microstructure [60]. Nonetheless, a joint quantitative
benchmarking of these techniques against histology was executed in only one study, and further validation of VER-
DICT is required.

In VERDICT, a tailored acquisition is required to sample high b-values (up to =~ 3000 s/mm?) and various A,

6, and potentially T'F in recent VERDICT extensions [59]]. This results in demanding acquisitions, as for DKI
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[55162].

Concluding, VERDICT is a promising technique providing sensitive markers of specific histological proper-
ties, and variations in the acquisition/analysis (AMICO, DDE, GANs, DNN-fitting, joint diffusion-relaxation mod-
elling), may strengthen its clinical feasibility. Its main advantage is that it attempts to disentangle independent
factors that can contribute to the diffusion contrast, striving to provide quantitative estimates of relevant biophysi-
cal properties such as cell size or density. Its main disadvantage is that it relies on a biophysical model that makes
strong assumptions on the underlying characteristics of the diffusion process (e.g., it neglects water exchange; it
assumes a fixed diffusivity in the intra-cellular compartment), which has not been fully validated yet. Moreover,
it relies on a long acquisition protocol, which may be impractical in certain clinical contexts where scan time is

limited.

3.6 IMPULSED

Seven articles report on IMPULSED [63H69] (Supporting Information Table S4), which is based on Temporal
Diffusion Spectroscopy (TDS), a framework that exploits TDD to resolve restriction lengths combining PGSE and

oscillating gradient spin echo (OGSE). This method was proposed by Jiang et al. (2017) [66].

Signal model IMPULSED models two non-exchanging compartments, describing intra-/extra-cellular water, i.e.,

S = ficSic + (17.]010) Seca (4)

where f;. (also known as v;,,) is the relaxation-weighted intra-cellular signal fraction, .S;./Se. intra-/extra-cellular
signals. ;. is modelled by diffusion within spheres of diameter d, with intrinsic cytosol diffusivity d;.. Se. is
modelled as

Sec(b) = exp(—bde.). (5)

de is approximately linear as a function of the OGSE frequency f [63H66] (dec = dec,0 + 5f), while it does not
depend on §/A in PGSE. A cellularity index can be obtained by combining d and f;. [66], similarly to [60].

In the original IMPULSED, signal contributions from perfusion are ignored and intra-/extra-cellular exchange
assumed to be negligible. In a study of Jiang et al. [63]], a third compartment is added to describe the effect
of vasculature. Li et al. [67] investigate the influence of water exchange, suggesting that it can be ignored if
the diffusion time is at least one order of magnitude smaller than the intra-cellular water lifetime 7;,, (> 30 ms).
Recently, water exchange was incorporated by Jiang et al. [69] in IMPULSED. This improved fitting accuracy and

provided additional 7;,, and cell membrane permeability P, estimates.

Required diffusion encoding protocol IMPULSED utilises LTE with both OGSE, probing ultra-short diffusion

times maximising sensitivity to cell size [66, [68]]), and routine PGSE wave forms. To obtain microstructural in-
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formation for common cell types, diffusion times in the range of approximately 1-70 ms are required [63]. Also,

b-values up to approximately 1000 s/mm? are used.

Fitting methods Fitting is performed via constrained non-linear least square optimisation. d;. (intrinsic intra-

cellular cytosol diffusivity) is fixed in most studies (e.g., 3 pm?/ms [63]) to increase precision [63] 64 68]].

Main histological correlates Comparisons to histological references were found for f;. and d. f;. is underesti-
mated with respect to histology [63}164}166,167,169], potentially due to unaccounted water exchange [[66L/69]]. The cell

size estimate d is less influenced by exchange and is moderately or strongly correlated with histology [63H67, 169].

Discussion Similarly to VERDICT, IMPULSED relies on a multi-compartment model to disentangle key prop-
erties of intra-/extra-cellular diffusion, providing metrics of cytometry designed to be highly specific to histology.
Practically, IMPULSED combines OGSE and PGSE to probe a wide range of diffusion times ¢4; sy (approximately
1.7-52 ms) as this improves microstructural inference of cell size. However, such a requirement can hinder the
practical implementation of the technique. The ¢4,y range that can be probed depends on the maximum available
gradient strength [65]], and by the fact that OGSE may not be readily available in commercial scanners [68]].

In conclusion, IMPULSED is potentially clinically-feasible, as long as the required gradient magnitudes are
achievable and OGSE sequences are available. It provides histologically-meaningful cell size indices (d), while

accurate f;. estimates are more difficult to obtain, especially if water exchange is not accounted for.

3.7 Stretched Exponential Model

In three papers, SEM, a technique developed by Bennett et al. in 2003 [70]], was mentioned [[17, 33, [71]], despite

not being the primary focus of the study (see Supporting Information Table S1 and S5).

Signal model SEM, a special case of Fractional Order Diffusion, attempts to quantify diffusion heterogeneity by

introducing a heterogeneity index «, such that

S = So exp(—(bDsem)™ ). (6)

S, So, b have the same meaning as described earlier, while « ranges from O to 1. « close to 1 implies low diffusion
heterogeneity (i.e., diffusion approximately Gaussian; mono-exponential decay). Conversely, the closer « to 0, the

more heterogeneous the diffusion process. Dgg s is the mean intra-voxel diffusion coefficient.

Required diffusion encoding protocol The protocol requirements are similar to those of DKI, namely, standard
LTE with at least two non-zero b-values plus one or more non-DW images. In body imaging, 3 directions per
b-value are typically acquired and averaged, and the diffusion time and TE are generally fixed for all b-values. The

maximum b-value used in SEM is around 2000 s/mm?2.
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Fitting methods SEM parameter maps are typically obtained via non-linear least squares fitting.

Main histological correlates Two papers compared SEM to histological indices [17,[71]. Dsgas shows similar
negative histological correlation with cellularity. Correlation figures for o are weaker. Nonetheless, linear regres-
sions that include both Dgps and o predict histological cellularity better than Dgg s alone [[17], implying that o

may carry sensitivity to microstructure.

Discussion SEM provides a framework that enables the characterisation of departures from Gaussian diffusion
and mono-exponential decay through diffusion heterogeneity. SEM provides useful information on microstructure
that generalises routine ADC. However, it suffers from similar issues as the techniques described above. Firstly,
its metrics are only semi-quantitative, as they may vary with varying diffusion protocols (e.g., due to changes in
the diffusion times). Morevoer, SEM has an unphysical nature, as the exponent parameter « does not have any
biophysical meaning [[72]]. Finally, it requires longer acquisition protocols and higher b-values than routine ADC
mapping, due to its higher number of parameters. This comes at the price of reductions in SNR, as well as potentially

higher susceptibility to motion.

3.7.1 (q-space imaging

g-space imaging (QSI) was the focus of two articles [[71}[73]. QSI is a phenomenological technique that recovers

the spin displacement distribution due to diffusion, developed by the seminal work of Callaghan [74].

Signal model QSI enables the estimation of the probability density of diffusion displacement r due to diffusion
over a time ¢ (p(r, t)), known as diffusion propagator. The estimation of the propagator is made possible by the fact
that the DW-signal measured as a function of the g-value q = v Gg (with G, 6 and g being the gradient strength,
duration and direction) at a fixed gradient separation A in the short gradient pulse limit (§ < é—i < A [[75]], where
L is the compartment size and Dy the intrinsic diffusivity), is the Fourier transform of p(r,¢ = A), which can can

be estimated by inverse Fourier-transforming DW measurement sets S (g, A) [3L[76], i.e.,
p(r,A) = F7'{S(q,A)}. (7

Required diffusion encoding protocol For QSI, rich protocols based on LTE PGSE are typically required. A
high number of measurements is required to sample the g-space and enable accurate inverse Fourier transformation.

For example, in [[71,[73]], 32 b-values up to 7163 s/mm2 were used.

Fitting methods The propagator in Eq. [7]is estimated via practical numerical implementations of inverse Fourier
transformation, such as the Fast Inverse Fourier Transform [71]. Ad-hoc methods have also been proposed in the
literature for the estimation of the propagator and of its salient properties, such as diffusion spectrum imaging (DSI,

2005) [[77]], or Mean Apparent Propagator MRI (MAP-MRI, 2013) [[76]. Multiple metrics can be used to characterise
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p(r, A), e.g., mean displacement (MD) or mean squared displacement (MSD) [73]], measurement of displacement
probability (such as the probability of zero displacement (PZD [[73]]), or the return-to-origin/axis/plane probabilities
(RTOP, RTAP, RTPP) from MAP-MRI [76]]), or the kurtosis [[73]] of the full-width-at-half-maximum (FWHM) of

the propagator itself [71].

Main histological correlates In [73]], MD correlated negatively with nuclear cytoplasmatic ratio and tumor cel-
lularity, while PZD and Kurtosis correlated positively with both features. In [71], the FWHM and its skewness

correlated negatively with cellularity and skewness of cellularity respectively.

Discussion QSI offers the advantage of reconstructing in full the diffusion propagator, enabling the characterisa-
tion of several different features of non-Gaussian diffusion. The included articles demonstrate that QSI is sensitive
to changes in microstructure [71} [73]]. Specifically, measures of water displacements derived from the propagator
correlate with cellularity/cell density. Potential drawbacks of QSI are that its metrics are surrogate markers with
limited biological specificity, since several different, independent factors can cause alterations of the propagator.
Moreover, the propagator is intrinsically diffusion-time dependent, implying that QSI metrics are semi-quantitative,
being protocol dependent. Finally, QSI acquisitions are more demanding than those required for ADC measure-

ment.

3.7.2 MRI-cytometry

MRI-cytometry is a two-pool intra-/extra-cellular biophysical framework for mapping cell size distributions, pro-
posed by Xu et al. [[78]], which is one of the articles selected in this review (see also Supporting Information Table

S5).

Signal model The MRI-cytometry model is a two-compartment model that describes the signal as arising from

the sum of intra-cellular and extra-cellular, extra-vascular components, without inter-compartment exchange, i.e.,
S = Sic+Sec~ (8)

Both intra-/extra-cellular signals are described as the sum of a continuous distribution of spin packets with fixed

properties. For a b-value b and a diffusion time 7, the these are written as

Sio = / / pre o (B aicldie, B) Pldic, F) d i dR ©)
di(: R

for the intra-cellular signal and

Sec = / / Pec e—b(dec,o * [73) P(dec,Ov ﬁ) ddeC,O dp (10)
dec,O 5
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for the extra-cellular signal. Above, d; is the intrinsic intra-cellular diffusivity, d.. o is the asymptotic extra-cellular
ADC, R is the cell radius, 3 is the extra-cellular TDD factor, p;. and p.. are the unit signal per unit volume coming
from the intra-cellular and extra-cellular compartment respectively, and a;.(d;., R) is the characteristic signal of a

cell with radius R and cytosol diffusivity d;..

Required diffusion encoding protocol As IMPULSED, MRI-Cytometry utilises LTE with both OGSE and
PGSE wave forms. The technique has been demonstrated in vivo on a clinical system using diffusion times 7

of 70, 10, and 5 ms, with the highest b being of 1800 s/mm?, 1000 s/mm2, and 300 s/mm? for each 7.

Fitting methods The MRI-cytometry model is fitted after constructing a discrete dictionary of candidate intra-
/extra-cellular signals, following a two-step regularised non-linear least square procedure [78]. This provides es-
timates of the joint probability density functions P(d;., R) and P(dec0, ) in each voxel. Integrating P(d;, R)
over d;. enables mapping the cumulative cell size distribution, whose peaks can be used to identify different cell

populations with remarkably different average cell sizes.

Main histological correlates The authors report a good match between cell size estimates and references from

cell cultures in vitro. However, correlation coefficients were not calculated, owing to the small sample size.

Discussion MRI-Cytometry is essentially a more complex implementation of IMPULSED. The technique can
potentially provide more in-depth information on the different cell types present in a voxel (e.g., small lymphocytes
vs larger cancer cells), as it enables recovering a full cell size distribution, rather than a single cell size index
per voxel, as IMPULSED. However, the more complex model comes at the expenses of more complex parameter
estimation, which is even more prone to instabilities, and requires regularisation. Finally, similarly to IMPULSE,
the technique requires combining LTE with OGSE and PGSE wave forms. The former are typically not available

in vendor-provided diffusion sequences, and may therefore be an hurdle for its practical clinical implementation.
3.7.3 Restriction Spectrum Imaging
Restriction Spectrum Imaging (RSI) was the focus of two articles included in this review [22} [79] (Supporting

Information Table S5). RSI was proposed in brain imaging by White et al.[80].

Signal model The method models the DW-signal as arising from a distribution of diffusion tensor components.
The components with the slowest diffusion are used as proxies for water restricted within cells. Different RSI
implementations vary depending on the number/characteristics of the components. One of the RSI articles included

in this review used three-component for discriminating rectal cancer grades [22], i.e.,

S = SO(CI e D + Cge_bDQ + Cge_bDS) s.t. D1 < Dy < Dg, (11
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where ('} 7 5 are relaxation-weighted signal fractions for restricted, hindered, and free water, while D; 2 5 (D; <

D; 1) their ADCs.

Required diffusion encoding protocol RSI can be performed at fixed diffusion time and it has been implemented
with protocols as short as 5 minutes. The method has been demonstrated using LTE PGSE with maximum b-values
as low as 1000 s/mm? in [79] and 2000 s/mm? in [22], i.e., using the same protocols that one could employ for

DKI.

Fitting methods Eq. [T1]is typically fitted using non-linear least square approaches. During fitting, the ADCs of
the different diffusion components are not estimated, but rather fixed to characteristics values. For example, in [22]]
the following values were used: D; = 0.5 um?/ms (restricted diffusion), Dy = 1.3 um?/ms (hindered diffusion),
D3 = 3.0 um?/ms (free water diffusion). After fitting, signal fraction maps can be standardised in the form of

z-scores using reference values from healthy tissue, e.g., from the healthy prostate, as in [79].

Main histological correlates Yami et al. [79] used RSI to estimate cellularity in prostate cancer, detecting vari-
ations of Gleason Grade within a single tumour. Similarly, in [22], the restricted signal fraction C correlated with

rectal cancer grade.

Discussion RSl is a promising techniques that attempts to disentangle different sub-voxel signal sources, provid-
ing signal fraction maps designed to be specific to characteristics cellular components. The technique is based on
a multi-component representation that can fitted more easily than multi-compartment models such as IMPULSED,
being the properties of such components fixed (i.e., pre-specified D; values). However, this comes at the price of
potential biases in the signal fraction maps, since the characteristics ADCs of the different sub-voxel components
are likely to vary on a voxel-by-voxel basis. Moreover, RSI modelling does not take into account explicitly the dif-
fusion time, implying that its metrics are likely to be protocol dependent. Regarding the acquisition, RSI requires
more complex protocols than routine ADC measurement. Nonetheless, it has been demonstrated with compact scan

times under 10 minutes, which offer promise for clinical translation.
3.7.4 MC simulations for microstructural mapping from clinical DW-MRI
One article [81] (see also Supporting Information Table S5) investigated microstructural parameter estimation from

clinical DW-MRI informed by MC simulations in skull-base chordoma cases treated with radiotherapy.

Signal model The technique essentially aims to map several ADC values obtained from different sub-protocols
of multi b-value clinical DW-MRI, to microstructural parameters that are more specific to the underlying tissue

histology: cellular radius R, cell volume fraction f;., cell diffusivity d;. and apparent cellularity pgpp.
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Fitting methods The mapping (ADCY, ..., ADCN) — (fic, R, dic, papp) is achieved by comparing voxel-wise
ADC maps to sets of synthetic, candidate ADCs values generated via Monte Carlo simulations. The comparison
involves multiple steps, and accounts explicitly the uncertainty of the estimation of each microstructural parameter
due to noise. Monte Carlo simulations were performed within synthetic cancer micro-environments in the form of

3D meshes.

Required diffusion encoding protocol The approach has been demonstrated with routine PGSE LTE, which

included 3 b-values (50, 400, 1000 s/mm?).

Main histological correlates Microstructural maps were related to the cancer aggressiveness as measured by Ki-
67 immunohistochemistry. All estimated tissue parameters differed between more vs less proliferative tumours (i.e.,
high Ki-67 vs low Ki-67 immunostain) [81]. Moreover, statistical survival models that combined all microstructural

parameters could predict the risk of progression following radiotherapy with high accuracy.

Discussion The approach presented by Morelli et al. [81] is promising in that it enables clinically feasible esti-
mation of microstructure metrics without any further assumptions than those that go into the simulations [82]. The
framework relies on simulations of diffusion that can be performed on synthetic cancer micro-environments, and
that can therefore incorporate unprecedented levels of microstructural details. On the one hand, this removes the
need for developing analytical expressions of the signal based on over-simplified geometric models of the tissue
(e.g., modelling cells as spheres, as in VERDICT or IMPULSED). On the other hand, the approach can potentially
enable the mapping of indices of cell heterogeneity, e.g., measures of dispersion in cell size or morphology. Despite
its potential, the method remains complex to be deployed in practice, since most centres may not have the capabili-
ties to run Monte Carlo simulations of the very specific DW-MRI sequences being used at the centre. The approach
has shown potential clinical utility, but the microstructural parameters have still to be validated by comparisons to

their direct counterparts from histology.

3.7.5 Multidimensional Diffusion MRI

Multidimensional Diffusion (MDD) MRI, also known as b-tensor encoding or g-space trajectory imaging, makes
use of generalised diffusion gradient wave forms [4]]. The approach, pioneered in vivo by Westin and Nilsson [4]]
after pre-clinical development by Topgaard, Eriksson and Lasic [83) [84], was investigated by Naranjo et al. [85]],

an article included in this review (Supporting Information Table S5).

Signal model In MDD, diffusion-weighting is described in terms of a b-tensor B, rather than by scalar b-values.

B is defined as

TFE
B= / a(t) a(t)" dt, (12)
0
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where q(t) = ~ fot g(&) d¢, with the diffusion gradient g(t) free to change its direction during encoding. This
sensitises measurements to different diffusion directions at once, probing a new contrast that is not accessible to
PGSE [86H88]], and disentangling heterogeneity in isotropic diffusivity from diffusion heterogeneity caused by
anisotropy. Different methods have been proposed to analyse data acquired with b-tensor encodings beyond standard
LTE PGSE or OGSE. These typically express the DW signal in terms of a continuous distribution of microscopic

domains, each characterised by a specific diffusion tensor [89], i.e.,
SB) = S, /P(B) e BPdD. (13)

Above, B is the acquisition b-tensor, D is the diffusion tensor of the generic diffusion component, P(D) is the

diffusion tensor distribution (DTD), and : denotes the double inner product between the diffusion-/b-tensors.

Required diffusion encoding protocol MDD-MRI protocols typically entail a variety of b-values sampled with
different b-tensor encoding shapes, e.g. combinations of LTE, spherical tensor encoding (STE) and planar tensor
encodings (PTE). While STE and PTE may not be available off-the-shelf in vendor-provided DW-MRI sequences,
several works have now developed robust implementations across multiple system platforms and manufactures,

which have shown excellent stability and reproducibility [90].

Fitting methods B-tensor encoding parametric maps are typically recovered by parametrising the signal as a
function of different features of the DTD, depending on the tissue of interest. For example, the signal can be
parametrised as function of the overall mean diffusivity (D) and the anisotropic and isotropic diffusional variance
(V4 and V7) [90], or via cumulant expansions of the DTD [4]. Fitting is then performed via non-linear least square
optimisation, and once the DTD parameters have been recovered, other microstructural parameters of interest can

be derived analytically, e.g., microscopic fractional anisotropy.

Main histological correlates The authors in [85]] used LTE and spherical-tensor encoding to obtain metrics as
D; s, (isotropic diffusivity) or D2 (shape parameter of diffusion anisotropy, similar to V4) of the various tensors
making up the DTD. Cancer and healthy tissue differed according to nearly all DTD metrics. However, histological

data were only assessed mainly qualitatively, as also done, for example, in the prostate [86].

Discussion MDD MRI has expanded the capabilities on in vivo DW-MRI, giving access to new diffusion contrasts
that cannot be probed with conventional diffusion imaging. These may enable disentangling subtle microstructural
differences that would be indistinguishable in conventional PGSE, ultimately providing useful biomarkers in sev-
eral types of body cancer. Despite its potential, at present the practical clinical use of MDD is challenged by the
limited availability of b-tensor encoding as an off-the-shelf product sequence. Moreover, b-tensor DTD metrics,
while surely promising, are phenomenological indices that are sensitive to different features of the underlying mi-

crostructure. Histological validation is ongoing in a variety of clinical contexts [25] to confirm their specificity, and
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to rule out confounding factors that have not been account for yet. Finally, it should be noted that MDD also comes
with some challenges. For example, it has proven difficult define exactly the sequence effective diffusion time in
presence of irregular, oscillatory gradient wave forms, as those required for the efficient implementation of STE
and/or PTE. This implies that strong differences in diffusion time across different b-tensor implementations, if not
accounted for, may confound the values of DTD metrics across scanners, and could therefore hinder the deployment

of these metrics as quantitative markers in clinical settings.

3.7.6 Hybrid Multidimensional MRI

Two papers used HM-MRI [91}192]], proposed by Chatterjee et al. in 2018 [93]] (see Supporting Information Table
S6).

Signal model HM-MRI models the signal as the sum of lumen, stroma and epithelium components:

n=3
S = S, ( 3V, et APO Ty ) . (14)
n=1

Above, V,,, T, and ADC,, are signal fractions, T2, and ADC of lumen, stroma, and epithelium water (n = 1, 2, 3),

which are fitted by imposing upper/lower bounds [93].

Required diffusion encoding protocol HM-MRI requires standard LTE PGSE acquisitions. Images at multiple
b-values and multiple echo times T'F are used, with three or more directions per unique (b,7'E) value, which are
averaged. The maximum b-value required for HM-MRI is around 1500 s/mm?. Regarding T'E, values as high as
200 ms or more are needed to appreciate the T2-decay of lumen water, known to feature a much longer T2 than
the stromal or epithelial components. HM-MRI has been demonstrated using at least 9 unique (b,7 F) acquisitions

[93].

Fitting methods Eq. is fitted via non-linear least square optimisation, imposing upper/lower bounds on
compartment-wise ADC and T2 values [93]]. For example, the lumen signal component is assigned the highest

ADC and longest T2, while the epithelial signal component the lowest ADC.

Main histological correlates Tissue composition changes were observed in presence of prostate cancer and re-
flected different histological grades. For instance, an increased epithelium and reduced lumen fractions were found
in tumours [91]]. HM-MRI fractions of lumen, epithelial, and stromal signal agree excellently with counterparts

derived from histology [91]], and matched well with expert interpretation [92].

Discussion HM-MRI is a diffusion-relaxometry method, which aims to resolve diffusion and relaxation properties
jointly in each voxel through multi-contrast readouts [94,[95]]. Joint diffusion-relaxometry imaging may be beneficial

when TR or TE are changed as part of the diffusion encoding protocol (e.g., due to restrictions imposed by MRI
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manufactures [60]]), or to account for the TE-dependence of multi-compartment signal fractions [45]]. Results from
the papers included in this review suggest that HM-MRI offers promise from clinical translation, given its excellent
agreement with histology and its easy-to-implement protocol, requiring approximately 10 minutes. However, HM-
MRI suffers from similar issues as methods such as DKI or RSI: its metrics may be protocol-dependent, since they
i) do not take into account sequence parameters such as the diffusion time (which may vary across b-values due to
changes in TE), and ii) rely on assumption on the characteristics ADC and T2 of the different prostate components,
which are unlikely to hold across all prostate voxels. Finally, the long TE required by HM-MRI jeopardises the

overall SNR, and acquisition protocols are more demanding than those required for ADC measurement.

3.7.7 Diffusion-Relaxation Correlation Spectrum Imaging

Diffusion-relaxation Correlation Spectrum Imaging (DR-CSI) was proposed by Kim et al. in 2017 [96] and de
Almeida Martins and Topgaard in 2018 [97]], after pioneering DR-CS work in spectroscopy in the early 2000s [98].
Two papers included in this review focussed on DR-CSI [99, [100] (Supporting Information Table S6).

Signal model In DR-CSI, no predefined number of compartments has to be defined [99], being the signal depen-
dent on a continuous ADC-T2 distribution p(ADC, T3), i.e.,

S(b,TE) = SO/ / p(ADC, Ty) ¢ *APC =% JADC dTy. (15)
0 0

Required diffusion encoding protocol DR-CSI is similar to HM-MRI, in that it requires multiple LTE with
PGSE wave forms, acquired at varying b-values and T'E. In body imaging the technique has been demonstrated
on ex vivo prostate scanned on a clinical system with 16 unique (b,7'F) encodings [99]], for a maximum b of 1500

s/mm? and maximum TE of 120ms.

Fitting methods p(ADC,T3) (the ADC-T2 spectrum) can be recovered via inverse-Laplace transformation or
related numerical approaches [94]. In [99], p(ADC, T5) non-negative non-linear least square regression with total
variation spatial regularisation was used. Peaks in p(ADC, T5) provide component fraction maps and characteristic
ADC/T2 [94,199]. Other fitting approaches are based on defining a pre-specified number of normative spectral com-
ponent, for example drawing regions-of-interest in tumours and/or normal tissue. The fraction of each component

is then mapped voxel-wise using regularised spectral analysis with cross-subject spectral standardisation [[100]].

Main histological correlates In [99], which focussed on prostate imaging, three signal components were de-
tected, and found to correspond to histological epithelium, stroma and lumen, with promising significant positive
correlations. The study only focussed on ex vivo data, and in vivo confirmation is required. Conversely, [[1L00]
tested whether DR-CSI enables the non-invasive grading of clear cell renal cell carcinoma. The authors identified

5 different ADC-T2 spectra in the kidney, and mapped the signal fraction of these spectra voxel-by-voxel. Two of
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these signal fraction maps correlated with cancer grade from histopathological assessment of HE-stained sections

obtained from nephrectomy.

Discussion Considerations for DR-CSI are essentially equivalent to those discussed above for HM-MRI. The
method is promising as it enables disentangling different water pools within a voxel. As compared to HM-MRI,
DR-CSI does not make any assumption on the number and characteristics of ADC-T2 component, and can therefore
provide higher specificity to biology: peaks in the ADC-T2 spectrum can be assigned to specific components (e.g.,
to stroma, rather than epithelium) by means of pilot MRI-histology correlation analyses. However, resolving a full
ADC-T2 spectrum is inherently more challenging, so this could come at the expenses of higher metric variability
and/or blurring of information due to the strong regularisation required for stable fitting. Finally, as for HM-MRI,
DR-CSI requires very long TE, which reduce SNR, and does not take into account changes in diffusion time during
the acquisition (likely to happen in clinical systems owing to changes in TE). Ultimately this may confound at
least in part the recovered ADC-T2 spectra, and lead to sub-optimal protocol-dependent metrics. However, this
is merely a practical limitation owing to current practices in sequence design, which could be easily mitigated by

scanner software upgrades.

3.8 mpMRI-based Al

Finally, one paper reported on methods predicting histology indices from multi-parametric MRI (mp-MRI) [101]]

with Al (Supporting Information Table 7).

Signal model This approach is general and flexible, in that it relies on training Al systems that predict histological
properties directly from mpMRI images and, potentially, easy-to-get parametric maps, as for example routine ADC

as provided by the MRI scanner as part of any clinical mpMRI implementation.

Required diffusion encoding protocol The approach has been demonstrated on prostate mpMRI, which includes
high resolution anatomical T2-weighted images, DW-MRI with at least one non-zero b-value for ADC calcula-
tion, plus, potentially, other contrasts, such as T1-weighted anatomical imaging and/or dynamic contrast-enhanced

(DCE) MRL

Fitting methods Histological images were co-registered to MRI and Al algorithms such as Deep Neural Networks
(DNNs) were trained to map MRI directly to histology. The user potentially does not require to perform any DW-
MRI signal model fitting, since simple parametric maps such as ADC provided by the scanner in clinical mpMRI

can be stacked as inputs of the DNNs.

Main histological correlates Sun et al. [101] estimated prostate cell density from mp-MRI with a generalised

additive model (GAM).
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Discussion The study shows promising MRI-histology correlations, with minimal requirements in terms of the
diffusion protocol. Nevertheless, the approach is challenged by several issues that are typically encountered in Al-
based methods. First of all, large, high-quality data sets of co-localised mpMRI and histology data - per se very
difficult to obtain - are needed to robustly train the Al systems. These should include mpMRI protocols acquired
with a variety of approaches, field strengths, resolutions, contrasts, etc, and in a variety of clinical contexts, to
ensure generalisability of the results. Secondly, extensive validation is needed to ensure that the trained Al system

do not provide histology predictions with hallucinated features.

4 Discussion

4.1 Summary

We reviewed systematically the state-of-the-art of advanced DW-MRI in body imaging in cancer (beyond the cen-
tral nervous system, i.e., mainly abdominal/pelvic imaging; and beyond routine ADC), analysing its value in tissue
microstructure assessment. Many different techniques were found, with the most common being IVIM, DKI, VER-
DICT and IMPULSED, and other gaining momentum, e.g., MDD or diffusion-relaxation MRI. All these methods
add additional degrees of freedom to routine diffusion protocols, increasing the measurement space so that more
microstructural information can be encoded in the signal, as illustrated in Figure 5. This is done by acquiring extra
b-values (e.g., IVIM, DKI, RSI), by varying diffusion times (e.g., VERDICT, IMPULSED) or T'E (e.g., HM-MRI),
or by using new gradient wave forms (e.g., MDD). These approaches have their own strengths and limitations, and
their clinical feasibility depends on requirements for non-standard sequences, maximum b, or scan time. A practical
example of a rich acquisition in this high-dimensional measurement space is provided in Figure 6. The figure shows
a breast cancer liver metastasis imaged at 3T with a diffusion-relxation protocol, where four different b-values are
acquired with LTE at 3 different echo times T'E. The images reveal faster signal decay with increasing b-value

within the tumour core, likely indicative of necrotic areas, which are surrounded by active tumour.

4.2 Routine DW-MRI: ADC mapping

ADC mapping was not included in this review, as it is extensively covered elsewhere. Our article focusses explicitly
on methods that go beyond routine ADC measurement, and for which histological validation has been carried out.
This explains the number of articles included in the review, i.e., 54.

ADC is, by construction, a surrogate, semi-quantitative metric that pools into one number several microstruc-
tural sources of diffusion contrast. Moreover, its actual numerical value depends strongly on the interaction be-
tween the DW-MRI acquisition protocol and the underlying microstructure, making it a semi-quantitative, protocol-
dependent index. Despite these well-known limitations, ADC has also shown some potential clinical utility in
several oncological applications, some of which are briefly discussed below for the benefit of the readership. For

example, DW sequences are now routinely included in genitourinary system imaging, with applications in the female
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pelvis, imaging of uterus and ovary, as well as prostate, bladder, penis, testis and kidney [102]. DW acquisitions
routinely come with scanner-computed ADC maps; these aid the visual interpretation of the expert radiologist be-
yond anatomical sequences, and are used, in some cases, to calculate cut-off values that can aid the differentiation
of different types of cancers (e.g., leiomyomas from uterine sarcomas [[102]]). Useful ADC cut-offs have also been
proposed to distinguish metastatic vs non-metastatic lymph nodes in breast cancer with high reliability [[103]], while
the detection of early ADC increases following chemo-/radio-therapy in oesophageal cancer were predictive of re-
sponse [[104]. In prostate imaging, DW imaging and ADC maps are now routinely included as part of the Prostate
Imaging Reporting and Data System (PI-RADS) [105]], a structured mpMRI report used in the treatment-naive
prostate to study potentially malignant lesions. ADC has been found to be moderately correlated with cancer grade
as assessed by the Gleason score [[106]], although at present there are still no, widely-accepted ADC cut-offs that can
be used to classify prostate lesions as malignant [[L07]. Such associations with Gleason score are in line with related
findings on cancer cellularity: ADC has been widely reported to correlate with tumour cellularity [[108]]. However,
while characteristics beyond cell density should be taken into account when interpreting ADC changes [109], since
ADC has been reported to correlate to a variety of histological properties, such as tumour-stroma ration, cell count,
proliferation indices from Ki-67 immunostains, or number of tumor-infiltrating lymphocytes in several types of
cancer of the liver [110]. From the more practical point of view of the MRI acquisition, efforts are also ongoing in
terms of standardisation of protocols for ADC calculation: guidelines in term of b-value choice, for example, are
provided as part of structured reports such as PI-RADS [105] for the prostate or Oncologically Relevant Findings
Reporting and Data System (ONCO-RADS) for whole-body imaging [[111]. Consensus guidelines have also been
published, as for renal and breast DW-MRI [[112} [113].

4.3 Advanced DW-MRI

Given the limitations of standard ADC mapping discussed above, current efforts of the DW-MRI community focus
on developing novel techniques capable of providing metrics that are not only sensitive, but also highly specific to
tissue features relevant in cancer. For this purpose, different biophysical signal models and/or phenomenological
signal representations have been developed in a variety of body imaging contexts (see Fig. 4 as well as Appendix
A for some basics principles of DW-MRI physics and signal modelling). These are typically based on analyti-
cal expressions that parametrise the signal as a function of the diffusion-encoding gradient timing and amplitude,
as well as of tissue parameters of interest. DW-MRI then attempts to solve an inverse problem, i.e., to infer the
unknown tissue parameters in each voxel from sets of signals measured at varying diffusion encodings. To solve
this task, several different estimation techniques are used, such as non-linear least squares fitting. However, the
solution of this inverse problem is generally ill-posed: different combinations of tissue parameters can explain the
DW measurements equally well. This issue is exacerbated by scarce acquisition protocols, which lead to degen-
eracy (measurement sets effectively lack specificity towards all microstructure parameters [114} [115]). To cope

with this problem, the go-to solution has been to fix some tissue parameters to pre-determined values. While this
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may increase estimation robustness, it also leads to biases when the microstructure does not conform to modelling
assumptions. The bias is unlikely to prevent a correlation between model parameters and a wide range of mi-
crostructures. However, subtle, pathological changes may produce a response in the constrained parameters that
does not reflect the actual microstructural alteration. Ultimately, this can lead to inflated believes in the validity of
constrained models. Recently, DNNs are becoming increasingly popular to solve this inverse problem [59,162,[116].
Nonetheless, even with Al it is not possible to retrieve the microstructural information that is not encoded in the
signal [[117]. This implies that DW-MRI parametric maps obtained through DNNs should always be interpreted
with care: unless specific strategies to map prediction uncertainty are implemented, DNNs always produce confi-
dently an output, which could then exhibit hallucinated features in presence of unexpected inputs, as these will be

mapped to the closest examples seen during the training stage.

4.4 MRI-histology agreement

Histological validation is imperative to demonstrate the sensitivity and biological specificity of any new DW-MRI
metric. To this end, the voxel-by-voxel comparison of spatially-matched MRI and histology is ideal. However,
obtaining this type of data in vivo is challenging, as it would require access to entire slabs of excised tissue, for
example following surgery [[L18]]. Alternatively, tissue can also be imaged ex vivo, following excision. Nonetheless,
in this case it would lack perfusion, and in both cases, microstructural changes occur as a consequence of fixation.
Importantly, DW-MRI maps are typically compared to tiny 2D sections of histological material (MRI slice thickness
~ 0.5-2.5 mm; histology sectioning of ~ 4-20 ym). As a consequence, portions of tissues that contributed to the
MRI signal are not included in histological analyses. This may explain, at least in part, why within-sample MRI
variations are not always mirrored by histology, despite overall strong MRI-histology between-sample agreement.

Another challenge is the fact that distributions of microstructural domains exist within a voxel. As a conse-
quence, some MRI metrics may depend on the image resolution [119] (the lower the resolution, the more het-
erogeneous the voxel content). Also, this means that non-trivial histological features can be encoded in the DW
signal. For example, DW-MRI cell size estimates are biased towards the largest cells, as these feature stronger time-
dependence, contain more water than smaller cells, and since the smallest cells may not even be distinguishable
(4-8 um is the intrinsic cell size resolution limit with clinical systems [120]). For this reason, comparing DW-MRI
cell size maps to the arithmetic mean of histology cell sizes [ (i.e., < [ >) may provide lower agreements than

1

N
comparisons to other statistics emphasising the largest cells, e.g., (2@) ! [L5]).

Nevertheless, all in all the articles in this review suggest that measuring key cancer properties throughout the
body in clinical setting may be feasible, i.e., vascularisation through IVIM-like approaches, and cell size/cellularity
with VERDICT, IMPULSED, MDD, and more. The analysed methods, while not always accurate, retain sensitivity

to key microstructural properties, and may provide non-invasive readouts useful in oncology.
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4.5 Challenges

Despite the potential of the reviewed methods, challenges remain.

Firstly, the variety of acquisition protocols encompassed in the review highlights the lack of standardisation
of advanced DW-MRI. While a truly quantitative MRI method should provide metrics that are invariant to the
acquisition protocol, in practice the number of microstructural parameters that can be estimated depends on the
measurements available. As a consequence, harmonisation (either prospective, or retrospective [121]) may be
required before the new biomarkers can be considered truly quantitative. In this respect, we point out that certain
inter-scanner differences are intimately related to the specifics of the acquisition, and are not only expected, but they
actually encode microstructural information. For example, the overall ADC is approximately equal to the average
of the ADCs of the different intra-voxel compartments, weighted by a TE-dependent fraction, i.e., ADC(TE) =~
> [i( TE) ADC;. Therefore, two ADCs obtained at two very different 7E may also be very different between
each other, due to inherently different T2-weighting. Harmonising these types of differences requires extra care, as
it could blur information about disease processes.

Another challenge is related to scan times being longer than what is feasible in hospital settings. DW-MRI is only
one of the several contrasts that are probed during an imaging session, where each contrasts typically takes no more
than 10 minutes. Future work is required to make the latest DW techniques feasible with ultra-short acquisitions,
potentially exploiting Al

Furthermore, the review has highlighted that DW-MRI suffers from high levels of variability [116]], implying
that some of the approaches presented in this paper may not work well on a patient-by-patient basis. Methodolog-
ical development to improve the intrinsic quality of images should therefore go hand-by-hand with signal model
development [122]], and should focus on: image quality enhancement via Al or machine learning; development of
novel signal readouts that increase the robustness to motion; hardware improvements (e.g., stronger field/gradient
strengths), to make acquisitions faster and increase SNR.

Finally, we stress that it is not yet known how the minimum, clinically-feasible DW protocol that enables resolv-
ing the microstructure exactly looks like. Research is still ongoing to understand which microstructural features can
be encoded in the signal. The newest diffusion encodings, coupled with the latest estimation techniques, ever-faster
acquisitions and protocol optimisation may soon increase the fidelity of DW MRI with respect to histopathology,
and help us find answers to key questions such as: How can we improve the validity of our DW-MRI models? How
can we ensure generalisability across protocols and model types? Are there specific applications where one model

is more suitable than another?, as this could pave the way to personalised medicine in oncology.

4.6 Limitations

We acknowledge two main limitations in the compilation of this review.
The search was restricted using several tailored inclusion criteria. While this ensured a reproducible and com-

plete compilation, it may have caused some articles to be left out of the selection for various reasons. For example,
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some methods may have only been tested in the brain (e.g., Pulsed and Oscillating Gradient MRI for Assessment
of Cell Size and Extracellular Space (POMACE) [[123]]); others may have lacked comparisons with histology [124];
and finally, some might have been missed due to variations in nomenclature, e.g., a study by lanus et al. [125] on
mesorectal lymph nodes.

Lastly, we classified techniques as phenomenological or biophysical (see Figure 3) to provide a general overview
of the DW-MRI landscape. However, we acknowledge that some techniques may in fact fit both categories, e.g.,

“partial volume” methods such as RSI or HM-MRI, here classified as biophysical.

5 Conclusions

Several DW-MRI techniques, including DKI, IVIM, VERDICT, IMPULSED, MDD, HM-MRI and other have the
potential to enable the non-invasive estimation of distinctive microstructural properties of cancer in the body, such
as its vascularisation or cellularity. These techniques provide histologically meaningful indices which, while not
necessarily accurate, may still equip oncologists with useful non-invasive biomarkers. However, further research is
needed before these innovative approaches can fully enter the clinic. Efforts are needed to harmonise acquisition and
analysis, to strengthen inter-/intra-scanner robustnesses, and to demonstrate histopathological validity in broader

contexts.
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Table 1: Summary of the diffusion models and signal representations included.

Salient MR-acquisition protocol

Main histological correlates

and simple ADC mapping based on PGSE

Model/representation | Reported by Model parameters .
requirements assessed
DKI (T3119] ADCy,, K ngh p-values required to sample non-Gaussian Cellularity
diffusion
IVIM 20IE026:43) | Dy, D, f Many b-values re.qulrfid, including low b-values to Cellularity, vessel density
sample pseudo-diffusion measures
?C’ Te f S PGSE protocol probing various different Cellularity. intra-cellular
VERDICT [52459] vaser e TE, gradient duration and separations. Harity,
decs duase Novel non-PGSE encodings recently explored fraction, cell size
Cell size radius R g yexp
IMPULSED [63+69] fic: dic: dec Uses OGSE in addition to PGSE Cellularity, intra-cellular
Cell size radius R fraction, cell size
. PGSE protocol probing different low and . .
SEM L7337 Dsewm: o intermediate b-values at fixed diffusion time Cellularity, heterogeneity
0SI [1173] Statistics from displacement PGSE protocol probing different q-values required, Cellularity, nuclear-to-
' distribution profiles with high gradient strength required cytoplasm ratio
Probability distribution of . .
MRI-Cytometry [78] cell size radius R, ierllleil;?:i(f)?mrzv:szlgisso can be applied for multiple Cell size
dic, dec, fic, extra-cellular DTD factor (8 q P
RST [2179] Volume fractions C, PGSE. w1th‘ high b-values required, but rélatn'/ely short Igdlces of 1ntrf"1-'v0xel
scan time (it can be performed at fixed diffusion time) tissue composition
Uses a variety of anisotropic or isotropic b-tensor
; Statistical descriptors of encodings; e.g., gradient waveforms implementing isotropic . . -
MDD-MRI (8] Diffusion Tensor Distributions linear encoding along multiple directions as well as Indices of tissue composition
spherical tensor encoding
The volume fractions V/,, Part of an mp-MRI protocol including T2-weighted, DCE,
HM-MRI [91])192] the T'2,,, and the ADC,,-value and diffusion imaging (PGSE at varying b-values Indices of tissue composition
for the lumen, stroma, and epithelium and TE, with no requirements on diffusion time)
Part of an mp-MRI protocol including T2-weighted
DR-CSI [99/1100] Volume fractions f, and diffusion imaging (PGSE at varying b-values and TE, Indices of tissue composition
with no requirements on diffusion time)
Cell radius and vol. fraction R and f;., Part of a clinical mp-MRI protocol including anatomical MRI
MC DW-MRI [81] cell diffusivity d;. and clinical DW-MRI for ADC mapping Ki-67 expression
and apparent cellularity p,, (no requirements on diffusion time)
mpMRI-based Al (101] Cellularity Part of an mp-MRI protocol including T2-weighted, DCE, Cellularity

Model abbreviations: DKI = Diffusion Kurtosis Imaging, IVIM = Intravoxel Incoherent Motion, VERDICT = Vascular, Extracellular, and Restricted Diffusion for Cytometry in
Tumors, IMPULSED = Imaging Microstructural Parameters Using Limited Spectrally-Edited Diffusion, SEM = Stretched Exponential Model, QSI = g-space imaging, RSI =
Restricted Spectrum Imaging, MDD-MRI = Multidimensional Diffusion MRI, HM-MRI = Hybrid Multidimensional MRI, DR-CSI = Diffusion-Relaxation Correlation
Spectrum Imaging, mpMRI = Multiparametric MRI, MC DW-MRI = Monte Carlo simulations for microstructural mapping from clinical DW-MRI, Al = Artificial Intelligence.
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Table 2: Table summarising the correlations observed between DKI and IVIM metrics and histological indices
reported in the 54 articles included in this review. Weak correlations that in absolute value were lower than 0.2
were not included in the table. Values of r indicate Pearson’s correlation coeflicients, unless otherwise stated.
Please refer to section[3.3]for the mathematical/physical foundations beyond each metric.

MRI metric

Correlation with histology

DKI
ADCxk

r = —0.24 with cellularity in [14]; » = —0.48 with nuclear-to-cytoplasm ratio in [16[; » = —0.73
(Spearman’s) with cellularity in [13]; » = —0.77,0.63 with cellularity, apoptosis rate in [18];

r = —0.40,—0.53, —0.55, 0.67 with nuclear, cytoplasmatic, cellular and prostate stromal fractions in [17];
r = —0.83,0.72 with tumour cell density, CD45 level in [19]; » = 0.24, —0.30 with stromal, nuclear
fractions in [20]; » = —0.21, 0.36 with tumour area, fraction of interstitium in [21];

r = —0.51 (Spearman’s) with tumour cellularity in [71]

DKI

r = 0.48 with cellularity in [14]; » = 0.54 with nuclear-to-cytoplasm ratio in [16];

r = 0.49,0.53 (Spearman’s) with cellularity, Ki-67 positive cell count in [13[]; » = 0.28, —0.23 with
cellularity, apoptosis rate in [18]]; » = 0.49, 0.49, —0.42 with cytoplasmatic, cellular and prostate stromal
fractions in [[17]; » = 0.35, —0.24 with tumour cell density, CD45 level in [19]; » = —0.20, 0.26, —0.29 with
cellular, stromal, nuclear fractions in [20]; » = 0.53,0.24, 0.38 with cancer cell nuclear area, lymphocyte
area ratio, cancer cell nucleus size in [21]]; » = 0.28 with tumour grade in [22]

IVIM
Dy

r = —0.33, —0.49, 0.42 with cell count, nuclear and stromal fraction in [26[]; » = —0.46 with perc.

of fibrosis in [30]; » = —0.89, —0.87, —0.84 with cell density, cell area fraction, nuclear fraction in [28];
r = —0.39 with tumour cellularity in [27]]; » = —0.45 (Spearman’s) with nuclear-to-stromal ratio in [31]];
r = —0.20,0.26, —0.29 with cellular, stromal, nuclear fractions in [20]]; » = —0.35 with a fibrosis index
in [34]]; » = 0.52, —0.20, 0.54 (Spearman’s) wih necrosis fraction, microvessel density and

apoptosis fraction in [35]]; » = —0.47, —0.50 (Spearman’s) with microvessel density, area with in [37];

r = 0.51 with microvessel density in [38]]; » = 0.84 with necrotic fraction in [39]; r? = 0.46 (r = —0.68)
with cell density in [40]; » = —0.57 with vasculogenic mimicry in [41]; » = —0.46, —0.31 (Spearman’s)
with necrotic fraction and microvessel density in [42]

IVIM
D *

r = —0.26 with perc. of fibrosis in [30]; » = 0.33 with microvessel density in [34]; r = —0.38,0.54, —0.69
(Spearman’s) with necrosis fraction, microvessel density and apoptosis fraction in [35]; » = 0.78
(Spearman’s) with microvessel density in [36]; » = —0.41, —0.37 (Spearman’s) with microvessel density and
area in [37]]; » = 0.71, 0.72 with microvessel density and pericyte coverage index in [41]; » = 0.22 with
microvessel area fraction in [21]; » = 0.33, 0.34 (Spearman’s) with necrotic fraction and

microvessel density in [42]; » = —0.92, —0.79 with Ki67-positive cell fraction, diameter in [43]]

IVIM

r = 0.35, —0.42 with cell count, stromal fraction in [26]; r = 0.44 with perc. of fibrosis in [30];

r = 0.63,0.61, 0.58 with endothelial area, total vessel area, microvessel count,

and f entropy showed » = —0.55 with a Ki-67 index in [29]; » = —0.24, 0.28, —0.24 with

cellular, stromal, nuclear fractions in [20]; 72 = 0.40 (i.e., 7 = 0.63) with microvessel density in [33];

r = 0.42 with a fibrosis index in [34]; » = —0.35,0.62, —0.55 (Spearman’s) wih necrosis fraction,
microvessel density and apoptosis fraction in [35]]; » = 0.75 (Spearman’s) with microvessel density in [36];
r = 0.77,0.82 (Spearman’s) with microvessel density and area in [37]; » = 0.28 with microvessel
density in [38]]; » = 0.43, 0.53 with microvessel density and necrotic fraction in [39];

r2 = 0.44 (r = 0.66) with blood vessel density in [40]; r = 0.52, 0.38 with microvessel density

and pericyte coverage index in [41]; » = 0.24,0.28, —0.37 with cancer cell area and nuclear fractions,
lymphocyte area ratio in [21]; » = 0.40, 0.44 (Spearman’s) with necrotic fraction and microvessel density
in mice injected with NCI-H226 cells, while r = —0.51, —0.55 in mice injected with MSTO-211H

cells in [42]; r = —0.69, —0.61 with

Ki67-positive cell fraction, diameter in [43]]
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Table 3: Table summarising the correlations observed between DW-MRI metrics of techniques other than DKI and
IVIM and histological indices reported in the 54 articles included in this review. Weak correlations that in absolute
value were lower than 0.2 were not included in the table. Values of r indicate Pearson’s correlation coefficients,
unless otherwise stated. Please refer to section [3.3|for the mathematical/physical foundations beyond each metric.

fraction C

MRI metric Correlation with histology

SEM Dspas r = —0.23,—-0.52, —0.50, 0.64 with nuclear, cytoplasmatic, cellular and prostate stromal
fractions in [[17]; r = —0.57 (Spearman’s) with tumour cellularity in [71]]

SEM « r = —0.23, 0.22 with cytoplasmatic fraction, nuclear-to-cytoplasm ratio [17]]

VERDICT f;. r = 0.90 with fraction of HE stained area in [54]] (DDE-VERDICT)

VERDICT R r = 0.68 with minimum Feret diameter of cells in [54] (DDE-VERDICT)

IMPULSED d r = 0.92 with m Vitro rpean cell diameter[64]; » = —0.64, 0.52 with percentage of CD3+ cells,
all-cell mean diameter in [[65]]

2\255;?513 r = 0.81 with histological cellularity in [66]]

IMPULSED f;. r = 0.83 with nuclear fraction in [[68]]

QSI Mean . . . L

. r = —0.71, —0.67 with nuclear-cytoplasmatic ratio and tumour cellularity in [73]

Displacement

Q51 Prob.ab1l1ty r = 0.79, 0.70 with nuclear-cytoplasmatic ratio and tumour cellularity in [[73]]

of zero displacement

Q81 Prgpagator r = 0.73,0.74 with nuclear-cytoplasmatic ratio and tumour cellularity in [[73]

Kurtosis

QSI Propagator

Full-Width-At-Half- | » = —0.51 (Spearman’s) with tumour cellularity in [71]

Maximum

RSI restricted

r = 0.40 with tumour grade in [22]

HM-MRI epithelial
fraction

r = 0.93 with histological epithelial fraction in the prostate in [91]

HM-MRI lumen
fraction

r = 0.90 with histological lumen fraction in the prostate in [91]]

HM-MRI stroma
fraction

r = 0.82 with histological stroma fraction in the prostate in [91]

DR_CSI epithelial r = 0.74 (Spearman’s) with epithelial fraction in the prostate in [99]

fraction

DR_CSI lumen r = 0.67 (Spearman’s) with lumen fraction in the prostate in [99]

fraction

DRCSI stroma r = 0.80 (Spearman’s) with stroma fraction in the prostate in [99]

fraction

DR-CSI component | The signal fraction of two components out of a 5-component spectrum correlated with
fractions tumour grade in [100] (» = 0.55 and r = —0.38)

Appendix A: diffusion MRI physics fundamentals

This appendix presents the physical fundamentals of diffusion MRI, providing context to the literature review. In

the following, the terms water molecules, protons and spins will be used interchangeably to refer to the motion of

them.
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Diffusion encoding

Time-varying magnetic field gradients are used to sensitise the MRI signal to diffusion. The classical DW-MRI
experiment is based on the Pulsed-Gradient Spin-Echo (PGSE) approach, also known as the Stejskal-Tanner exper-
iment, single diffusion encoding, or, more recently, as linear b-tensor encoding. The schematic of a PGSE sequence
is shown in Fig. 1.

The PGSE approach is based on the spin echo experiment, in which two radiofrequency (RF) pulses, of flip
angle 90° and 180°, separated by a time TE/2 are used to irradiate the sample. The first pulse excites the tissue,
creating a component of magnetisation orthogonal to the static field. The second pulse refocuses the magnetisation
by cancelling out the effect of field inhomogeneities. The signal is sampled at a time TE, i.e., when the refocussing
is complete, and the signal is weighted by the underlying T2 relaxation constant, i.e., proportional to e~75. In
PGSE, two magnetic field gradient lobes (known as diffusion-encoding gradients) are added on either side of the
refocussing pulse. The first gradient lobe effectively tags water molecule’s phases depending on their spatial posi-
tion, so that their phases will now depend on their position along the gradient direction. Conversely, the effect of the
combination of the refocussing pulse and of the second gradient lobe is that of cancelling out the phase distribution
modulation caused by the previous lobe, for those molecules that do not move. If all spins were perfectly static
during diffusion-encoding, one would measure the same T2-weighted signal that one would have obtained without
diffusion encoding. However, due to diffusion, water molecules change their position in between the two gradient
lobes, as well as during the application of each lobe itself. This implies that a full phase coherence over the spin
ensemble will not be re-established at the echo time ¢ = TE, so that the signal measured will be smaller than the
one obtained without diffusion-weighting, leading to signal attenuation. The amount of attenuation increases as the

degree of diffusion taking place increases, resulting in DW images of lower intensity.

b-value and diffusion time

The amount of signal loss caused by diffusion-weighting depends on several factors. Some depend on the tissue
being imaged, such as the underlying intrinsic diffusion coefficient and the characteristics of the microstructure, e.g.,
type and features of the biological structures that restrict or hinder diffusion. These features include, for example,
the density and size of cells. Other factors depend instead on the acquisition, and are: the gradient magnitude G,
the gradient duration ¢, and the gradient separation A (see Fig. 1). The total DW-signal S is the ensemble average
of the signals from all spins, i.e.,

S = Sy <eé?> (16)

where Sy is the T2-weighted, non-DW-reference signal and ¢ is the phase accrued by a generic spin. ¢ depends on
the interaction between a spin’s random walk over time r(¢) and the temporal evolution of the diffusion encoding
gradient g(t), i.e.,
TE
o= = [ e ran (7
0
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For free water self-diffusion without any barriers, equation [I6]simplifies to

S = S Cxp(_bDwater)- (18)

Above, S is the non-DW signal (proton density-, T2- and potentially T1-weighted), whereas D, q¢er is the
intrinsic diffusivity of water at the experiment temperature, and b provides a general indication of the overall strength
of the diffusion-weighting. This factor depends on the acquisition settings, and is routinely known as b-value. It

can be calculated as:

b=~2G?*5*(A - §/3) (19)

where + is the proton gyromagnetic ratio, and G, ¢ and A the gradient parameters. Another useful sequence
parameter is the overall diffusion time 4,5y = A — ¢/3. This provides an indication of the amount of time that

diffusing water molecules are allowed to experience the microstructure, before the MRI signal is acquired.

Intra-voxel heterogeneity mapping with PGSE

The voxel size of in vivo MRI in humans is of the order of a few cube millimetres. The observed MR-signal in a voxel
arises from contributions of various diffusion processes taking place within different cellular components, since the
voxel size is much larger than the scale of the microstructure where diffusion takes place (~ 1 — 100um). As a
consequence, in vivo DW-MRI measurements are characterised by intrinsic, intra-voxel partial volume effects, and
the signal entangles the contribution of multiple water pools in one measurement. Different techniques have been
proposed to disentangle such contributions, with the ultimate aim of obtaining sensitive and specific biomarkers
of tissue microstructure. The solutions proposed in the literature span phenomenological signal representations
(e.g., estimation of apparent diffusion and kurtosis coefficients, stretched exponential, anomalous diffusion), multi-
compartment biophysical models, and include recent approaches based on innovative diffusion acquisitions such as
double diffusion encoding and b-tensor encoding [4, [86l].

The section below provides a general overview of the techniques available for microstructure inference in DW-
MRI. The section aims to provide some context for the detailed description of the methods found in our systematic
literature search. Importantly, we point out that the inference of microstructure from signal measurements is a chal-
lenging task: different combinations of microstructural parameters can provide virtually indistinguishable signals
in certain measurement regimes and in the presence of noise, making microstructure estimation an ill-posed inverse

problem [114].

Phenomenological signal representations It can be shown that the signal in Eq. can be expanded as a
function of increasing powers of the b-value, i.e., In(S) ~ >, ax b* (the cumulant expansion [23]]), where

coefficients ay, are related to the cumulants of the spin displacement distribution within a voxel. Expanding Eq.
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(16) up to the second power of b (i.e., with an approximation error proportional to O(b?)), provides

S =25, e—bADC +iK(bADC)? (20)

In Eq. above, ADC' and K are respectively the apparent diffusion and excess kurtosis coefficients along the
direction of the diffusion encoding gradient. ADC' provides a measurement of the overall amount of diffusion
taking place during the measurement along the gradient direction, so that higher ADC' implies stronger signal
decay. Conversely, K gives an indication of how much the diffusion process departs from Gaussian, free diffusion.
While K = 0 would imply perfectly Gaussian diffusion, i.e., mono-exponential signal decay, a non-zero K can
arise when i) multiple Gaussian water pools with different intrinsic diffusivities are found inside the same voxel, ii)
diffusion is restricted by geometric confinements, iii) orientation dispersion of microscopic domains exists within
the voxel, iv) different water compartment exchange water during the MRI signal encoding, or by a combination of
all of these. Signal representations as those in Eq. (20) are sometimes referred to as phenomenological: they provide
a description of the signal and link this to the statistical moments of the spin displacement distribution, but without
seeking to estimate the biophysical causes of the observed diffusion phenomenon (e.g., without trying to estimate
biophysical properties such as cell size, cell density, etc). On the one hand, phenomenological representations do
not make any assumptions on the geometry of the tissue (e.g., modelling cells as spheres [60]]). On the other hand,
measures such as ADC or K may be difficult to interpret, being surrogate indices that entail contributions from
multiple biological factors in one number.

When the b-value is not too high (generally, not exceeding 400-800 s/mm? in body imaging or 1000-1500 s/mm?

in the brain), the first-order term in the b-value (cumulant) expansion is dominant, and the expansion reduces to

S = Sye tAPC (21)

where Sy is the non-DW-signal, b the b-value and ADC is the apparent diffusion coefficient. ADC is a sensitive
marker of tissue microstructure, but has relatively poor biological specificity, since contributions from different
water compartments within the same voxel (e.g., intra-/extra-cellular water) are pooled together in one, average
number. This implies that ADC measurements do not describe the complicated diffusion process in heterogeneous
microstructures accurately: signal contributions from different processes within a voxel, including pseudo-diffusion
due to perfusion, are integrated and modelled by one single diffusion coefficient, which also depends on the par-
ticular diffusion times used for the acquisition (e.g., gradient duration § and gradient separation A). Due to this,
the ADC' is defined as an ’apparent’ coefficient. Nonetheless, ADC' is easy to obtain (ADC maps can be com-
puted with as few as two images), and offers sensitivity to alterations in tissue microstructure due to pathology,

classification or grading of tumours, and therapy response assessment.
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Multi-compartment biophysical modelling Multi-compartment biophysical models describe the DW-signal as
arising from the contribution of multiple water pools located in different cellular compartments, as for example
intra-cellular or extra-cellular water. Fitting such models to sets of DW-measurements may provide voxel-wise
estimates of salient biophysical properties, as for example intra-cellular water fraction or characteristic restriction
size, effectively reflecting intra-voxel cell size statistics.

The number and characteristics of the tissue parameters that can be estimated depends on the assumptions
made when building the geometric representation of the biophysical model - e.g., spherical vs elongated cells,
characteristics of the cell size distribution, etc - as well as on the acquisition protocol. The most common tissue

parameters that are estimated in biophysical modelling are:

e compartment-wise signal fractions, e.g., fiase, fics O fEES, Which respectively represent the fraction of

signal coming from vascular water, intra-cellular water and extra-cellular extra-vascular water;
e cell size radius R or diameter d in um;

« cellularity indices C, i.e. with units in cells/mm? or cells/mm?>. A common way of estimating C'is to

combine metrics such as f;. and d in one number, e.g., C' {1‘3? [55].

Other approaches beyond PGSE

PGSE is the most common diffusion MRI acquisition implementation, and is available in virtually all clinical scan-
ners. However, several other implementations of the DW-MRI experiment exist. Some of the latest implementa-
tions probe new diffusion contrasts that are not physically accessible with standard PGSE, and therefore offer great
promise for the development of new biomarkers of cancer. Nevertheless, these more advanced implementations
often come at a price, as for example the need for strong gradient systems, longer echo times TE, and may not yet
be available as vendor-provided implementations on clinical systems.

Oscillating gradient spin echo (OGSE) is similar to PGSE, in that two diffusion gradient wave forms are inserted
on either side of the refocussing pulse of a spin echo sequence. However, in OGSE, the gradient is not pulsed, but
it is rather made of an oscillating waveform at a specific frequency f [123]]. A key characteristic of OGSE is that it
enables probing much shorter effective diffusion times ¢4; 7y than PGSE, at a given b-value.

Double-diffusion encoding (DDE) combines in one acquisition two diffusion encoding blocks, separated by a
mixing time [54]]. The two diffusion encoding gradients are consecutively applied with two different orientations,
separated by a relative angle ). DDE enables probing diffusion correlations, resolving properties of microscopic
domains (e.g., anisotropy and/or eccentricity of pores where restricted diffusion takes place) without the confound-
ing effect of the macroscopic, orientational arrangement of the ensemble of the microscopic domains.

DDE also finds application in Filter-Exchange Imaging (FEXI) [48]]. In FEXI, a first diffusion encoding block
acts as a filter that suppresses the signal from fast diffusing components. The signal read at the end of the second

block will be modulated by the amount of water exchange between water compartments taking place during the
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mixing time. FEXI has been used to measure the apparent exchange rate (sensitive to cell membrane permeability,
but it is not a measure of permeability as such) and other exchange processes, as for example in breast cancer [48]].

Multidimensional Diffusion (MDD) MRI is an innovative diffusion MRI framework that relies on a new diffu-
sion encoding paradigm (also known as b-tensor encoding, or g-space trajectory imaging) [4, 183} 184} [88]]. MDD
generalises the traditional approach based on PGSE (which is, in fact, a special case of b-tensor diffusion gradient),
sensitising the measurements to different diffusion directions at once and thus probing new diffusion contrasts that

are not accessible to standard PGSE.

Appendix B: Search query

(“cell size*”’[tiab] OR ”intra-cellular fraction*”’[tiab] OR cellularity[tiab] OR cytometry[tiab] OR ”Cell Size”’[Mesh]
OR ”cell density”’[tiab] OR “volume fraction*”” OR ”component fraction*”[tiab] OR “perfusion fraction*”[tiab]
OR ”vascular fraction*”[tiab] OR “fractional volume*”’[tiab] OR tissue component*”’[tiab] OR tissue composi-
tion*”[tiab])

AND (histolog*[tiab] OR histologic[tiab] or histologically[tiab] OR histology[tiab] OR histopatholog*[tiab]
OR patholog*[tiab] OR microstructur*[tiab])

AND (oncology([tiab] OR tumor[tiab] OR tumour[tiab] OR abdominal[tiab] OR liver[tiab] OR pelvic[tiab] OR
hepato*[tiab] OR musc*[tiab] OR cancer[tiab] OR prostate*[tiab])

AND ("DW-MRI[tiab] OR ”diffusion MRI”’[tiab] OR "dMRI[tiab] OR ”diffusion weighted imaging”[tiab]
OR "DWTI[tiab] OR ”Diffusion Magnetic Resonance Imaging”[tiab] OR “Diffusion Magnetic Resonance Imag-
ing”’[Mesh] OR Diffusion-relaxometry”[tiab] OR Diffusion Relaxometry”’[tiab] OR DWI[tiab] OR “multidimen-
sional MRI”’[tiab] OR “multiparametric MRI”’[tiab] OR mpMRI[tiab] OR bpMRI[tiab] OR mp-MRI[tiab] OR
“multi-parametric MRI”’[tiab])

AND (estimat*[tiab] OR predict*[tiab] OR correlat*[tiab] OR validat*[tiab])

NOT (neuro*[tiab] OR cerebral*[tiab] OR “Neurology”’[Mesh] OR ”Brain”[Mesh] OR brain[tiab])
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Table 4: Different fitting algorithms that can be used to fit the IVIM-model to measured DW-MR signal data
[47,[116]. The algorithm that is used the most for both IVIM fitting and VERDICT fitting is LM.

Algorithm

Type

Estimated parameters

Method description

Levenberg-Marquardt (LM)

Least-squares

Dtsst*

- Determines values of the three parameters
simultaneously in each voxel
- No boundary constraints possible

Trust-Region (TR) based

Least-squares

Dtsst*

- Determines values of the three parameters
simultaneously in each voxel

- Uses restricted search space, boundary
constraints easily incorporated

Fixed-D*

Least-squares

vat

- Same as TR, but now with D* fixed to
a value defined a priori

Segmented-Unconstrained (SU)

Multi-step

In first step: D; and f
In second step: D*

- Most frequently used algorithm for IVIM
analysis

- Uses assumption that D? is dominant

at high b-values and that D* is negligible here
- Uses TR based algorithm in the second step

Segmented-Constrained (SC)

Multi-step

In first step: D; and f
In second step: D*

- Similar to SU
- Now assumes that the intercept of S is
equal to Sy

Bayesian-Probability (BP)

BP-based

Dy, f, D*

- Does not fit each voxel independently
- Fits using a kind of spatial similarity
additional information incorporated

Deep Neural Network (DNN)

Auto-encoder

Dt’f,-D*

- Unsupervised network with

three hidden layers

- Constraint: the input signal should be
encoded by the three IVIM-parameters

- Increased fitting speed in comparison with
LM and BP-algorithms
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Figure 1 Schematic of the idealised Pulsed-Gradient Spin-Echo (PGSE) sequence. The first and
second radiofrequency (RF) pulses rotate the magnetisation vector by 90° and 180° respectively. These
two pulses are characteristic for a spin-echo sequence, as they consecutively excite and refocus the
magnetisation. After a time TE (the echo time), a spin echo is formed and the centre of the k-space is
sampled. The diffusion encoding gradient consists of two pulsed wave forms on each side of the 180,
which diffusion-weight the spin echo. The diffusion gradient is characterised by a gradient magnitude
G, the gradient duration 8, and the separation time in between the two gradient lobes A. Note that the
figure represents a simplified theoretical schematic of PGSE. In real world, the gradient pulses are not
rectangular but rather trapezoidal, due to technical requirements.



Excluded (n = 87):
Articles identified through PubMed and screened - Reviews (n = 14)
based on title and abstract - Case report (n = 2)
(n=1354) - Study protocol (n = 4)
- Not an application of
DW-MRI for microstructural
assessment (n = 11)
A - Neurological disorders (n = 31)
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in literature review (n = 54):
- Kurtosis (n = 6)
-IVIM (n=19)
- VERDICT (n = 8)
- IMPULSED (n=7)
- Other models (n=14)

Eligibility and including

Figure 2 Flow chart of the literature search in PubMed. Acronyms stand for: DW = diffusion-weighted,
IVIM = Intravoxel Incoherent Motion, VERDICT = Vascular, Extracellular, and Restricted Diffusion for
Cytometry in Tumours, IMPULSED = Imaging Microstructural Parameters Using Limited Spectrally
Edited Diffusion.
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Figure 3 A visual summary of the techniques found in the literature search and their main histological
correlates. PGSE = Pulsed Gradient Spin Echo, DKI = Diffusion Kurtosis Imaging, IVIM = Intravoxel
Incoherent Motion, VERDICT = Vascular, Extracellular, and Restricted Diffusion for Cytometry in
Tumours, IMPULSED = Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion,
SEM = Stretched Exponential Modelling, QSI = g-space imaging, RSI = Restricted Spectrum Imaging,
MDD-MRI = Multidimensional Diffusion MRI, HM-MRI = Hybrid Multidimensional MRI, DR-CSI =
Diffusion-Relaxation Correlation Spectrum Imaging, MC DW-MRI = Monte Carlo simulations for
microstructural mapping from clinical DW, mpMRI = Multiparametric MRI, Al = Artificial Intelligence.



A) By field strength: no. of experiments B) Species: no. of experiments
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C) Tissue condition for MRI: no. of experiments D) Cancer application: no. of experiments

3 for kidney (4.9%)
9 for liver (14.8%)

14 for prostate (23.0%)
1 or ovary (3.3%)
1 for esophagus (1.6%)

2 for bone
4 W|th in vitro (3.3%)
fixed (e 6%) —
1 for pleura (1.6%)

1 for stomach (1.6%)
4 W|th ex vivo _ 1 for H&N (1.6%)
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1 for lung (1.6%)

6 for colon/rectum (9.8%)
\ 3 for pancreas (4.9%)

4 for sarcoma (6.6%)

in vivo (82 /6)

3 W|th ex vivo
fresh (4 9%)

10 for breast (16.4%)

Figure 4 Salient statistics regarding the MRI-histology experiments performed in the identified articles.

(A): Bo magnetic field strength used for MRI. (B): species from which the imaged tissues were obtained.
(C): tissue condition during MRI. (D): main cancer application.
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Figure 5 lllustration of the acquisition space exploited in advanced DW-MRI techniques. The figure
illustrates the main acquisition parameters that can be varied to generate high-dimensional multi-
contrast image sets in advanced diffusion imaging, i.e., changes in b-value (overall diffusion-weighting
strength), b-tensor encoding shape (e.g., planar, spherical or routine linear encoding), diffusion time,
as well as potential changes in echo, inversion or repetition times for joint diffusion-relaxation imaging.
Changes in b-value, diffusion time and echo time are illustrated with a hepatocellular carcinoma
(primary liver cancer) case, scanned at 1.5T. Changes in b-tensor encoding shape are instead
illustrated with a prostate cancer case, scanned at 3T. The prostate images have been adapted from
Figure 2 of reference [86], which was published in open access form under a CC-BY Attribution 4.0
International license.



Breast cancer liver metastasis

TE=105 ms

)

E
=)
o

TE =

75 ms

=

b =0 s/mm? b =100 s/mm? b = 400 s/mm?2 b = 1500 s/mm?2

Figure 6 Example of a rich, advanced DW-MRI acquisition in body cancer. The figure shows a diffusion-
relaxation acquisition performed at the level of the abdomen with a 3T system, to image a breast cancer
liver metastasis. The diffusion protocol features the acquisitions of multiple b-values b with LTE, each
acquired independently at several echo times TE.

Supporting Information

Supporting Information Tables S1 to S7 Summary of the content of the 54 articles included in the
literature review.

Supporting Information Data D1 CSV file storing information on the type of tissue being imaged
(species and condition during MRI, e.g., fresh or fixed), the target anatomy and the cancer application
for all the MRI-histology experiments included in the 54 articles part of this review. Note that the data
set contains more than 54 entries, as in some articles multiple experiments on different tissues were

performed.



List of Abbreviations

Abbreviation

Definition

PGSE

TR
TE
ADC

DKI, K, ADCk

HCC
SNR
N/C ratio

SEM, Dsem, @

IVIM, D¢ D*, f

VERDICT

fic, fEES, fvasc

dic, dees, dvasc

ROC, AUC
LM
ICC

BvD, MVD, MVA

CD, TCD
AMICO

Pulsed Gradient Spin-Echo

Repetition time
Echo time
Apparent Diffusion Coefficient

Diffusion Kurtosis Imaging, Kurtosis, diffusion
coefficient corrected for kurtosis

Hepatocellular Carcinoma
Signal-to-Noise ratio
Nuclear-to-cytoplasm ratio

Stretched Exponential Model, mean diffusion
coefficient, heterogeneity index

Intravoxel Incoherent Motion, true diffusion
coefficient, pseudo-diffusion coefficient, perfusion
fraction

Vascular, Extracellular, and Restricted Diffusion for
Cytometry in Tumors

Intracellular fraction, extracellular-extravascular
space fraction, vascular fraction

Intracellular diffusion coefficient, extracellular-
extravascular space diffusion coefficient, vascular
diffusion coefficient

Receiver Operator Curve, Area Under the Curve
Levenberg-Marquardt fitting algorithm
Intraclass Correlation Coefficient

Blood Vessel Density, Mean Vessel Density, Mean
Vessel Area

Cell Density, Tumour Cell Density

Accelerated Microstructure Imaging via Convex
Optimization

Abbreviation

Definition

|
R,d, L

AIC

ROI

DDE

TDD

RSD

OGSE
IMPULSED

Tin, Pm
1P-MM, 2P-MM

MDD

DTD

E,V

Diso, Da2
RSI

QSI

HM-MRI
CCC

DR-CSI
bp-MRI, mp-MRI
ML, DL, CNN

Cell size radius, cell size diameter, volume-
weighted cell size

Akaike Information Criteria
Region of Interest

Double Diffusion Encoding
Time Dependency Diffusion
Relative Standard Deviation

Oscillating Gradient Spin-Echo

Pre-exchange lifetime of intracellular water, cell
membrane permeabillity

One-cell population microstructure model, Two-cell
population microstructure model

Multidimensional Diffusion MRI

Diffusion Tensor Distributions

Mean, Variance

Tensor size, tensor shape

Restricted Spectrum Imaging

g-space Imaging

Hybrid Multidimensional MRI

Lin’s Concordance Correlation Coefficient
Diffusion-Relaxation Correlation Spectrum
Bi-parametric MRI, multiparametric MRI

Machine Learning, Deep Learning, Convolutional
Neural Network



Table 1. Information extraction of the articles that reported an evaluation of the Kurtosis model - continues on next page [1/2].

Author (year) Study goal

MRI scanner

Salient Diffusion
protocol

Tissue
condition on
MRI

Extra model specifics

Models

Quantitative comparison with histology or Discussion: value for assessment of micrestructural properties
compared simulated data

Discussion:
Other advantages
Other limitations

Deen (2019) Assess clinical feasibility of |Clinical 3T MRI PGSE, b = {0, 100, 500, |+ In vive ! ADC Histelogy, correlation: = Significant correlation ADC ., K and cellularity, but not superior than = Good intracbserver and interobserver agreement for all diffusion metrics
DKI for prediction of scanner 900, 1300, 1700} sfmm2 |Owvarian Ceflularity vs.: ADC =Significant difference in K for therapy responders and non-responders - not for
response to therapy {Discovery esach at TR/TE = 6000/94 |cancer, * K (p=0.49, p=0.04) ADC and ADC
MR750, GE ms humans * ADCy (p=-0.77, p=0.02)
Healthcare, » ADC (p=-D.73, p=0.03)
Waikecha Wl
Rosenkrantz Aszsessing hepatocellular 1.5-T dinical MR |PGSE, b = {0, 500,1000, |* Ex vivo, fresh|/ ADC Histology. correlation: = K did not correlate with cellularicy * K showed the greatest HCC-to-liver contrast in comparison ADC and K
(2012) carcinoma using DKI scanner 1500, 200% s/mm2 each |liver explant Cellularity vs: = Tha lack of correlation could reflect overlap in structural heterogeneity » All tumours showed excess K greater than 0.30; indicating non-Gaussian diffusion
{Magnetom at TR/TE = 4500/100 ms  |refrigerated, * ADC, weak measured by K among tumors with different cellularity levels is present in all HCC
Avanto, Siemens maximal delay » ADC ., weak = Another option is that the influence of higher order cellular topology = There was a lack of strong correlation between ADC, ADC, vs. K., which suggests
Healthcare) betwesn » K, weak measured by K is not captured by histological cellufarity measures, complementary, nonredundant information offered by K.
explantation ADC ws.: = In a subgroup of the tumours, there was a significant correlation between
and ex vivo * ADCy, r=0.91, p=0.001 ADC and cellularity; but still none for K * K had a significantly greater coefficient of variation than ADC or ADC,, which can
imaging 10 = K, r=-0.79, p<0.017 point either to greater sensitivity to tissue heterogeneity or greater statistical
hours ADC ¢ vs.: variation. The latter iz more fikely,
Hepatocellular * K, r=-0.79, p=0.001
carcinoma,
humans
Grussu (2022) |Test a method for mapping |Preclinical 9.4T PGSE, 10 b-values in [0; | Simulation |ADCy and K are usad as ! Simulation : = ADC, and K offer sensitivity to D0 and L even at reafistic SNR (=20) FPolyMap vs. SigFit:

DKI-parameters to cell size
and diffusivity, from Diw-
MR data acquired at fixed
diffusion tims

Bruker Avance

4500] s/mm2, TR/TE =
2700/45 ms; {5,0% = {10,
30} ms

study

= ExX ¥ivo,
farmalin-fixed
mouse fiver

input for estimation of
intrinsic cell diffusivity Dy
and cell size measure L.
ADC,, K were fit using non-

* PolyMap does not predict D0 and L
accurately, but does capture salient
characteristics of the relationships

» Cell sizes can be classified in small -

= Tha models capture salient cell-size contrast at fixed diffusion time

= Tha mappings provide cell-size contrasts that correspond with histology,
even though estimates are not accurate for largest and smallest values;
they can still be used to characterize cell-size variations

= PolyMap predicts smoother than SigFit, has higher precision than SigFit
= D0 is more variable for SigFit than for PolyMap

= PolyMap detects PDX-WT differences in DO unlike SIgFt

= Both models provide a good quality of fit

b= 1700 was used for cancer linear least-squares fitting, medium - large categories with an accuracy |« Relatively small changes in DO and L cause large variations of K and = Resufts quantify how much information can be rewrieved with minimal schemes
model fitting Two models are used to map up to 0.7 ADC,, which implies that kurtosis captures deviations from Gaussian fike this one with one fixed diffusion time: the relative performances of bath models
from {ADC,.K) to Dy and = Dy and L are overfunderestimated at the diffusion well depend on diffusion sequence; it may be feasible to obtain cell size values if the
(ADC,, K] to L: lower/upper end of their ranges; extent varies |= A higher SNR and longer tdiff lead to smaller arror ﬂght technigue is .used Even with = fixed diffusion time. When 2 rich sequence
*PolyMap: based on with gradient timings. mu_}ht not b_E po_sssble this is useful. However, aoquiring data at varying diffusion
polynemizl function weightings is ctill preferred method,
= SigFit: 2 biophysical Histology : . . . . i .
e T DL » | agrees well with L_histo for both modeis . Mappings do not estimate DO and L acr_uﬁbelv fnr_the studied range, This could be
DW signal for PDX type tumour; for WT, L is larger than improved h?' using more ad van::_ed mapping strategies - such as random
L_histo especizally for PolyMap. forestmodels - or using voxei-wise fitting,
= Mappings overestimate histological cell size, especially for larger cells
= Mot yet tested with clinical acquisition protocol; now at 9.4T
Wu (2017) Compare performance of  |Clinical 1.5T MR [PGSE, b = [0, 300, 600} |In vive ! ! Histology, correlation: » In addition to mean kurtosis, also radial and axial kurtosis were » Good intrachserver and interobserver agreement for each parameter
DKI-and DWI for scanner [uMR s/ mm2, TR/TE = 3000/57 |Clear Cell MNuclear-to-cytoplasm ratio vs.: measured. These parameters are defined to specifically address direction- [= MK is promising for differentiation of tumour grades.
characterization of rena 550; United ms Renal Cel = ADCy, r=-0.474, p=0.001 dependent K, not useful for determining microstructural properties of * Lowi b-values only were used in this study, higher clinical feasibility; does give
cancer Imaging Carcinoma, = K, r=0.543, p<0.001 whele tumours. fess information though.
Healthcare, humans = Thare is a correlation between ADC, and K and N/C ratio, but no

Shanghai,Chinz)

Mo correlation with cell nuclei count or
intracellular fraciton {call volume fraction
heral

correlation between K and cellularity measures.

» Mechanism between relationship of afterations in kurtosis metrics and tumour
grades has yet to be determined.




Table 1. Information extraction of the articles that reported an evaluation of the Kurtosis technique - final page [2/2].

Author (year) Study goal Salient Diffusion Tissue Extra model specifics Models Quantitative comparison with histology or Discussion: value for assessment of microstructural properties Discussion:
protocol condition on compared simulated data Other advantages

MRI to Other limitations

Deen (2019)  |Assess cliniczal feasibility of [Clinical 3T MRI PGSE, b = {0, 100, 500, |=In vivo ! Histology, correlation: + Significant correlation ADC ., K and cellularity, but not superior than * Good intrachserver and interobserver agreement for all diffusion metrics
DKI for prediction of scanner 900, 1300, 1700} s/mm2  |Ovarian Cellularity vs.: ADC »Significant difference in K for therapy responders and non-responders - not for
response to therapy (Discovery each at TR/TE = 6000/94 |cancer, » K [p=0.43, p=0.04) ADC and ADC
MR750, GE ms humans » ADC, (p=-0.77, p=0.02}
Healthcare, = ADC (p=-0.73, p=0.03)
Wankecha WTI
Rosenkrantz Assessing hepatocellular 1.5-T cfinical MR |PGSE, b = {0, 300,1000, |= Ex vivo, fresh|/ ADC Histology, correlation: = K did not correlate with cellularity * K showed the greatest HCC-to-liver contrast in comparison ADC and K
(2012) carcinoma using DKI scanner 1500, 200} s/mm2 each [liver explant Cellularity ws: * The lack of correlation could reflect overlap in structural heterogeneity + All tumours showed excess K greater than 0.30; indicating non-Gaussian diffusion
(Magnetom at TR/TE = 4900/100 ms  |refrigerated, » ADC, wezk measured by K among tumors with different cellufarity levels = present in all HCC
Avanto, Siemens maximal delay » ADC ., weak » Another option is that the influence of higher order cellular topology *» There was a lack of strong correlation between ADC, ADC, vs. K., which suggests
Healthcare) between » K, weak measured by K is not captured by histological cellularity measures, complementary, nonredundant information offered by K.
explantation ADC vs.: = In a subgroup of the tumours, there was a significant correlation between
and ex vivo * ADC, r=0.91, p=0.001 ADC and cellularity; but still none for K *» K had a significantly greater coefficient of variation than ADC or ADC,, which can
imaging 10 = K, r=-0.79, p<0.017 paint either to greater sensitivity to tissue heterogensity or greater statistical
hours ADC  vs.: variation. The latter is more likely,
Hepsancelintie * K, r=-0.79, p=0.001
carcinoma,
humans
Grussy (2022) |Test a method for mapping [Preclinical 9.47 PGSE, 10 b-values in [0  |= Simulation ADC, and K are used as i Simulation - * ADC, and K offer sensitivity to DC and L even at reafistic SNR [ =20) PolyMap vs. SigFit:
DEI-parameters to cell size |Bruker Avance 4500] s/fmm2, TRITE = study input for estimation of » PolyMap does not predict DO and L = The models capture salient cell-size contrast at fiked diffusion time * PolyMap predicts smoother than SigFit, has higher precision than SigFit
and diffusivity, from DW- 2700/45 ms, {&A} = {10, | Ex vivo, intrinsic cell diffusivity Da accurately, but does capture safient = The mappings provide cell-size contrasts that correspond with histology, |* D0 is more variable for SigFit than for PolyMap
MR data acquired at fixed 30} ms formalin-fived |and cell size measzurs L. charactaristics of the relationships even though estimates are not accurate for largest and smallest values; » PolyMap detects PDX-WT differences in DD unlike SIgFit
diffusion time mouse liver ADC,, K wers fit using non- » Cell sizes can be dassified in small - they can stll be used to characterize cell-size variations » Both models provide a good guality of fit
b » 1700 was used for cancer linear least-squares fitting, medium - |arge categories with an accuracy |« Relatively small changes in DO and L cause large variations of K and * Results quantify how much information can be retrieved with minimal schemes
maodel fitting Two models are used to map upto 0.7 ADC,, which implies that kurtosiz captures deviations from Gaussian fike this one with one fived diffusion time: the relative perfarmances of both models
from {ADC,.K) 1o Dy and » Oy and L are overfunderestimated at the difFusion well d.e pend on di'."Fuslicm seqaenc\e;.it may be .feasii::le @ abtain cell siz?e values if the
{ADC,,K) to L lower/upper end of their ranges; extent varies [« A higher SNR and longer wdiff lead o smaller emor fig ht technigue is used even with a fixed diffusion time. When a rich sequence
~BolyMap: bassd on with gradient timings. mfght net b.e p:-fs:ble this is useful, However, acquiring data at varying diffusion
Sk i weightings is still preferred method.
= SigFit: a biophysical Histalogy : . . : . )
el farrhe el » L agrees well with L_histo for both medeis * Mappings do not estimate 00 and L accurately for the studied range. This could be
DW signal for PDX type tumour; for WT, L iz larger than improved by using maore ad-'mnr_ed mapping strategies - such as random
L_histo especially for PolyMap. forestmodels - or using voxel-wise fitting.
* Mappings overestimate histological cell size, especially for larger cells
» Mot yet tested with clinical acquisition protocol; now at 9.4T
Wu (2017) Compare performance of  [Clinical 1.5T MR [PGSE, b = {0, 300, 600} [In vivo f ! Histology, correlation: *» In addition to mean kurtosis, also radial and axial kurtosis were » Good intrachserver and interobserver agreement for each parameter
DKI and DWI for scanner [uMR 5/ mm2, TR/TE = 3000/57 |Clear Cell Nuclear-to-cytoplasm ratio vs.: measured. These parameters are defined to specifically address direction- |= MK is promising for differentiation of tumour grades.
characterization of renal 550; United ms Renal Cel = ADCy, r=-0.474, p=0.001 dependent K , not useful for determining microstructural properties of * Low b-values only were used in this study, higher clinical feasibility; does give
cancer Imaging Carcinoma, K, r=0.543, p=0,001 whole tumours, ess information though.
Healthcare, humans » There is a comrelation between ADCy and K and N/C ratio, but no
Shanghai,China) Mo correlation with cell nuclei count or correlation between K and cellularity measures. * Machanism between relationship of afterations in kurtosis metrics and tumour
intracellular fraciton {cell volume fraction grades has yet to be determined,
hors




Table 2. Information extraction of the articles that reported an evaluation of the Intravoxel Incoherent Motion (IVIM) model — continues on next pages [1/3].

Salient diffusion Tissue condition on  Extra modeal
protooo!

Correlabe IWVIM

3-T MR scanner

Sirghe diffusion

In vivo,

Bi-exponential madel Miting, waimg

AT we. 1

Discussion: valua for assesamant of microstructural
properties

= ACcording bo thedr multiple linear regression, nucear and stroma

» For all four parameiers interohserwer

f2022) parameters to {Discovery MR 750w [encoding, b = Rhabdamiyasarcoma in MADC Software”. » Cell count, ro=-0.410, p=0.022 fraction Independently correfated with O and stroma fraction agresment was giod
guantitative . GE Healthcare, | 40,50,100,150,200,4 |mice = Muclear fraction, fha=-0.540, p=0.002 Independently comelated with £. ADC independently cormelated with  |= D showed the best diagnostic abllity when
histological features (Chicaga, IL) 00,600,800,1000, 120 = Stroma frection, rho=0474, p=0.007 both nuckear fraction and stroma fraction, comparing with ADC and locking at the AUC af

0% s/mm2, TR/TE = D, vs.: = They did not find very promising results for the IVIM parameters;  |ROC,
300080 ms = Cell count, weak fesw significant correlations and never a correlation if ADC did not

» Nuclear fraction, rho=-0.491, p-0.005 already correlate. This suggests that IVIM does not provide wseful

» Stroma fracthon, rho=0.421, p=0.018 afditianal infarmation

Cytoplasm fractio and nuckear to cytoplasm ratlo

did not correlate with any of the metrics.

None of the micostnectural parameters

correlated with D* . Neither with F, except for

stroma fraction (rho =-0.423,p=0.018).

Hecht Azgess relationship |Qlinical 1.57 {Signa| Single diffusion In wivo, ! ADC Twao fitting methods used: Mean vessel density, mean vessel density hot = Mot wery promising results for the IVIM paramebers in terms of = The interobserer ICC was excallent for ADC,

{2017) babwesn IVIM HEy, 16.0 software, (enceding, b = Pancreatic = 1. MNonlinear least -square fitting  |spots, mean Bbrasis fraction, fraction kgh correlation with micrestructural paramebers: mean vessel density or (£, and D,. For D* it was poor. Intraobserver ICC
parameters to GensralElectric, 40,25.50,75, 100,150, [adsnacarcinagma in based on LM. Mbrasis, tumol call densily were tesied fai cell density. was excelent for all
histopathology Waukesha, WI) 200 400,600 800 } Miimans e 2. Fiied mddel methad, correlation to ADC, f, Dy, O* = It was found thak LM fitting estimates

s'mm2, TRTE = Comparison : nistological parameters better thant he fixed D=
11000774 ms = All Mtting modeis gave goodness | Symimary of fndings: methad.
of fit stabstic R2=0.7, = Coaralation of £ with mean fibrosis fractan
= Mogh significant correlations were |(r=0.44, p =0.055) = The coefficient of varance was greatest for D
achieved for both readers using D |« Correlation of o, with high fibroses fradtion [r=- and I. This could indicate that D* and [ has a
and rMted with Inear [east Squares(p 46, p=0.04) large statistical variety; or that they include a
fit-and then LM of 0* so data of » Mo cormelations between cell density and any of tot af information on tissue heterageneity. Their
Lhee first TG wers yserd tha narsmatars ol ek b Haat

Meyer Agsodation of IVIM  [(Clinicad 3.0 T Single diffusion In wivo, Histogram-based ADC Simplified IVIM 2nadysis; wsing Cafularty, endothefial area, total vessel area, = A significant correlation is found bebween F and vasodarity = Excesient interregderagreement basad on the

{2021) histogram device (Magnetom |encoding, b = Rectal cancer in meatrics of the TVIM- Advanced Diffusion Analysis ADA  |vessel diameter, vessel count were tested for parameters interreader 10C
parameters to Skyra, Slemens,  (40,50,200,500,100} |humans parameters are also toal. correlation to ADS, f O, D* e The I, was not superior compared to ADC
histopathalogy Erfangen, simm2;, TRYTE = computed. = Endothveiial area and F (r=0.63, p=0.008} = There is a tack of standardization in the TVIM

Germaimy | 670058 ms » Total vessel area and £ {r=0.61,p=0,002) Nate: acouisiten protocol: there ane large differences
o Microwessel count and f (r=058,p=0.01) = Histagram-based parameaters wene also computed, however for aorgss studies in regard of used b-values; Uskng
No IVIM parameters showed 3 significant simpdcity they weve not faken imo account n this review. Only the | Mare is supposed bo De betler, sometimes it
correlation with cellulanty or vessel diameter. No |mean valiss were consioered, gives similar results. In addition, using fess b
correlation of ADC or D, with endothalialivessel valuas is more feasible in dinic,
Folh -

Yin (Z2018) |Predia tumour cefl |[Clinical L5 T MAI | Single diffusion In ¥ivo, i/ ! Fit the moded wsing freely available |Cefl count 20 and 30, tumaor cefl load bn each = Strong correlation found betwesan D and cell density, cell area = In this artice, a pipeline is developed Lo infer
count amnd [Avanbn, Slemens, |encosding, b Lumg candcer in software MITK DiFusion. winel, call number witle tumour were fested af |fracthon and nuclear amea fraction tuemar cell numbers directly from non-invasive
haterogeneity from | Erlangen) =4{ 0,%0, 100,150,200, [humans » Average goodness of Tk R2 is correlation to O, = Based on the relationship found between O, and cell density, the  [DWI data, Focuses therefore a bit as well on 2n
D'WI-data 40D BOD} s/mma 0.91. v 20 cell density and Dy (r=-0.54) tumour cell count 1s estimated (see Eq. B in the paper), This gives automated image segmentation pipeline for

» 3D cell density and D, (r=-089) reasonable results, histological data.
= Cell area fraction (intracelluflar fraction) and O, |* Only tested this relationship now for one tissye bype, should be
(r=-0.87] further tested o test ibs validity Tor obher ssus bypes to see ¥ Hhe
+ Muclear area fraction and 0, (r=-0.84) relationship s generafizable. Shauld thus be calibrated for differant
tUmoUr bypes.

Yiian Irvestigate 3T dual-transmit | Simghe diffushon In wive, f ADC Custorm-writhen programs in = 0, and ceflulamy (p=-0.316, p=0.039} = The IVIM-baszad D, correlated more with celiilanity than ADC: ADC |/

{2016) Intralusmaour MR Scanner encoding, b={0, 50, |Clear Call Renal MATLAS = Mo correlation ADC with callularity (p=- overestimatad the tissue diffusion compared to O, This supports the
Reterogensty, (Achieva Philips 100, 200, 450, 600, [Cardnoma in humans D0.214,p=0.169]) advantage of IVIM excluding the perfusion contribution,
correlats MRI Healthcare, Best, |10D0O} sfmma;
measuremsents with |The Netherfands} |TR/TE=1 breathing = ADC and O, were significantly corelated to
Lumr vasculariy Cycle/ el ms each other [p=0.679,p<0,0001)
and rellilaity

Wirrfield Correlate 1.5 T MAGNETOM |Single diffusion In wivo, f ADIC Vosel-wise wsing Markow-chain = [, and natural logarithm of nudear-to-stremal |= Correlation between ADC and O, and high celldarity (high nudear- [« Bepeatability of DF was similar te ADC, but for

(2013} quantitative Aera MRIScanner | emopding, Retroperitanesl Mante Carbo method for robust bi-  rallo (r=-0.45, p=0.005); similar for ADC. Also & |to-stromal ratio) points out that the degree of restricted difusion fand D® pood
multiparametric MRI [{Siemeans, b={0,25,50,80,150,3 [sarcoma in humans exponential curve-Titting dependence on stroma type and grade for both,  |relates to the density of tumour cells.
values Eriamgen, Germany |00, 500,800F » Mo correlation betwesn veasel density and f, = IWIM parameters did not contribute additional information to ADC.
nistopathalogical A = 2B.4 ms, o*
findings G={5.4,12.6,14.6%

ms

Cal (2021) [Investigate the 3.0-T MRI Singie diffusion n vive, ] ADC Mon-finear regression algerthm. Mo correlation found bebween TVIM-parameters | Higher D, values indicated increased cellularity, * D, had gooed discrimination performance fol

walie of IVIM-DWI  |scannerVeno; Enonding, Owarian cances i rats Bnd MVD. the Eumour by pes.

In differentiating Slemens b={ 0,50, 100,150,320

OvEfian cances Healthinesr 0,400,600,1000% = Interabserver agreement was accephable for

bypes Sfimma, Dt, and I, but low for D¥

TR/TE=3300,71 ms = [ and D™ failed to distinguish bebwesn tumour

types.
= Mo correlation found between ! and D= and
atw OCF-MET naramalaie

XNiao (2020) |Explore cortelations | 3T MR scanner PGSE, b = {0, 50, In wiva, Histogram-based  |ADC_ K A two-step Mting mathod = Histogram metrics frem ADC, O, 1, and ADC,  |= The diffusion coefficents from IVIM and kurtosis were similarly = Good intrareader agresments achieved

of histogram metrics
of ADC, IVIM, and
D1 wilth
histopathologlcal
parameters in
snonasal tEncers

{ Magnebomierio,
Slemens
Healthinesrs,
Erlamgen,
Germanmy )

100, 150, 200, 250,
300, 350, 400, BOO,
1000} s/mm2, TR/TE
= 5200,83 ms

Sinonasal cancer in
humans

metrics af the IVIM-
parameters are atso
oomputed.

were significantly corretated with ceblular,
stromat, nuclear; and cytoplasmic fractons
» ADC, I, and ADC, were also significantly
comrelated with midear-to-cytoplasmic ratig.

significantly correlated with cellular and tizsue composition fractions.
= Histogram mebrics of ADC, showed higher comefation cosMcients
with histopathological features, indicating that ADC, s a more
a¢curate difusion paramet st

» Histogram metrics of I were significantly correlabed with cellulars
and stromal fractions; as high cellular and stremal fraction indicates
abhundant capillary network and active nesanginesis, this can be
explained.

= The histogram metrios cowld not be correfated with histopathologic
features on a point-to-paint basis

Nofe:

» Histogram-based parameters were also compited, however for
simplicity they ware nof faken imto account in this review. Only the
Mhean Valies were considered,

=0.825 for all

= Froam all analysaed histogram metrics, the
HiS[nglﬂ"l‘l metrics abtained fram DE1 were the
most efficient indicators for the characterization
al tumor migostrecture,




Discussion: value for assessment of microstructural
properties

Wu (2016) |Livwestigate the 1.5T MEI system  |PGSE, b =430, 10, |In wivo, / ADC, K. |"A manufacturer-supplied software |With mean vessel density: = AL twe ol thrae measured tmepalnt, [ was correlabed to MV, lower (= ADC Dt I, Dops, ADC had excelient
value of differsnt (Achieva 15T, 20,30, 40, 50, 75, Rabbit theer W2 SEM [PRIDE DWI Toal, v, 1.5; Philips = ADC and  highest coirelation al one imepaednt; |vascularity leads to 2 wer I AL the first dmepaint, mo carelation reproducibility. D%, O, K warse,
diffugion models for |Philips Heafth-care,( 100, 150, 300, 500, |carcingma Healthcare}and workstation 2 = 0,307, p= (L0117 and r2 = 0.402 yel, bacagse bumours were Sl relatively small with sparse vessels. . |y ADC, 1, and K were Identified &s the most
manibering chamges |Best. Netheramnds) (800 s'mm2, TR/TE (Extended Workspace, Philips = [ no significant correlation at any Umepoint = [ was the only parameter that showed high correlation for MVD. promising parameters for monitoring changes of
In Bver cardngma, = 1310/85 ms Healthcare" = [ did not cormelate with MVD and had poor reproducihility. VNI carcnoma
and For comelating
perfusion
param=ters 1o
Bigtelemye
Liv (2021} Explaring 3.0 Teska MRI PGSE, b = {0, 10, In wivo, ' ADC "R segment analysis mathod = Sgnificant correlations between fMibresis and Oy = Significant corredaticn between IVIM parameters and tumour = ADC Dt and I had high intermeader
differences between |system 20, 40, 60, BO, 100, |Pancreatic ductal described previsusly” {r=-0.35, p=0.01)and f{r=042 p=001) |Abfosis agresment (075-0.83 ICC), but D™ low (D.23)
IVIM-parameters (Ing=nia, Philips 150, 200, 500} acenacarcingma in = Significant correlation between D= and MVD (r (¢ D correlated with MyD = A high b-walue requires an increased TE,
and ADC fof Healthcare, Best, |s/mmd, TRHTE = hilmans = [L33, p = 0.02) which lowers aoverall SNR; this is especialty an
evaluating histology |Netherands 1261/69 ms izsue for pancreatic tissue, as this has short T2
af pancreath cance il -
= IVIM-parameters had higher sensitivity and
diannnstic nerfnnmance o arading Thinsis in
Song Azgass IVIM for 3T MEI (GE PGSE, b= {0, 10, In vivo, ' ADC Levenberg-Marquarde fit = ADC and DE were significantly correlated with = D values were positively correlated with intratumoral necrosis and |« Lack of standardization in magnitude and
(2016 ) monitoring early Healthcars, 15; 20, 25, 30, 60, Human gastric cancer necrotic fraction (r = 0.720, p < 0.00%; r= Ccelular apoprosis number of b-valses that ooght to be appied
rESponse to Waukesha, 'WI, 75, 100, 200, 400, Dearing mice 0.522, p = 0.0DE} = [ and D™ correlated with MYD = IVIM zullers significantly from variatans in
chematheray in United States) 200} 5/mm2, TRYTE = Mo significant oorrelation amang ADC, Db, and SMR, prone to gensrats measurement &mois
human gastric = 20004/55.6 ms MYD whern b= 1005 mm2
CAMCET MUSE (Teodel = [ and D™ significantly corredate with MVD (r=
0.618, p= 0.001; r = 0.536, p = 0.006)
s Nn sinsifieant coreedatinn neceatic Bragbing s 0
Lee (2014) (Test correlation 3.0-T MRI PGSE, b = {0, 50, In wivo, i r "Using in-house software writken  |» O and T significantly correlated with MWD » D* and [ are comefabed with histological MVD = OV of D™ and I were high across tumours in
Detween IVIM- lmagingsystem 100, 300, 500, 700, |Human codorectal by MATLAB [r=0.7E2,p<0.001 and r=0.749,p<0.001) spite of tham having the same matignant
paramaters and {Magnetom Trig; |1000% sfmm2, cancer implanted in = Mo significant corredation betwesn O, and MWD histology ; probably due Lo varlation in MVD &s
histological Semens Medical |TH/TE = 3300/ 104 mice wedl
microvessel dengity | Sodutions, Erlangen |ms
Germaryl
Maper Compare IVIM and 1.5 T scanner (Mag| PGSE, b= {0, 50, In wivo, i 7 A bwo-step Mting mathod = [ Correiated significantly with MVD and MVA (g |= No significant. rank coimelation between D* and MVD or MVA, = The applicabblity of DW IVIM-MAI seams
(2021) CT perfusion to netom Avanto, 100,150,200, 300, [Pancreabc = L7770 and p = 0.818; both p < 0.0O5) although 0I5 supposed to be 3 Now-redsted parameater; possible comparable bo the applicability of CT perfushsn
assess perfusion ol | Semens Medical (400, 600, BOO} adenocarcingma in explanation Is that D* is found o be much less stable than T for assesment of tumour Usswe parfusion
pancieatic tumaurs | Solutlons) simm2, TRITE = hilmans = Dt did not conmelate with any histolegical microvessel paramelers,
FTHOOER e 25 jg pgnerterd
Li {2018} Compare IVIM and  |Achieva EST PGSE, b = {0, 10, In vivo, i/ ADC "3 software pragram (PRIDE DWI = [y corelated significantly with MyVD {r = 0.509, |= I had no correlation with MVD; implying 2 potential mismatch = All parameters had exoefient reproducibility
CT perfusion to (PhilipsHealthcare, | 20,30, 40, 50, 75, Rabbit Fwer VX2 Tood, version 1.5, Phillps p = 0.044) betwesn I and angiogenesis due Lo a serles of mentionad
assess micrwessel |Best, Netherands) (100, 150, 300, 500, [umours Healthcare]” = Mo significant corredation betwean f, D*, ADC Mt hamsms.
dansity 800% sfmm2, TR/TE and MVD = O* showed no corralation between MYD as well, implying that D*
= Z660/B0 ms value cannol be considerad as reflection of microcinculatory
perfusion; for which a mumber of possible explanations are
meentioned.
= DE was the only parameter that did correlate significantly with MVD,
wihich in theary does not make sense; for this varous reasons are
ot inriged 2o winil
Marl {2022) |Evaluate correlation |3-T system (Intera |PGSE, b= {0,50, In wivo, Useg 3 combined ADC A Dwi-step ftting mathod Tested for corredaticn with area ratio of cancer = The difference in results between the ADC and Oy might be = Interobserver agreement was excellent 10Cs
af ADC and TVIM- Achiewva dStream, |100, 300, 550, 850, |Breast cancer in TVIM-D8 madied, celis, cancer call nuclei and cybyplasm, attributable to the complexity of the IVIM-D imaging mogai, of &l computed parameters were =03.617.
diffusion kurtosis  |Phillips Healthcare; | 1000} sfmmZ, TR/TE [humans Compubes in Interstithum, lympocyle, microvesseis, size of rendering it mere susceptible to MRT nokse = Further studies comparing kurtosis abtained
model parameters  |Best, The = 498774 ms addition to cancer cefls and cancer nuchel, and entropy. s K correlated significanty with the area ratio of cancer cell nuchel: from data acquired with higher b-values [
with histological NE‘!!‘IIEHEHL‘IS} peffusion fractian F = [ significantly cormelabed with area of Cancer kurtasis becomes larger with larper nudeus and more tissue = 1000 sfmm2 ) with guantitative histological
parameaters peewde-difusion cell nudlel (r = 0.53, p = 0.00079); ADC neterogenaity paramaters are needad In the fulure; in this
O, brue diffusion coirelated significantly with area ratlo of the study highest b = 1000
Dy, also the kurtosls interstitium (r = 0.53, p =0.00082) and with
o entropy (r = -0.58, p = 0.00019)
= Mo ather correlations found
Yang Ta investfgate 1.5T MR scannel PGSE, b = {0, 25, In wivo, Hepatacelular |/ ADC “an in-house developed software Treated grous » Mogerale corredation was found bebween [ and MYD in the contral = Intra- and intersbserver 1IC0Cs were observed
{2017) affectivensss af (Magnetom Aera; |50, BD, 150, 300, CAICInGMa in mice based on MatLab (Math'Works, = ADC, D, f had significant correlation with group, but no correlation between ADC, Dt and NF, while for the for all parameters
IVIM-parameters in | Semens 500, BOO} sfmm, Matick, MA), where the fttimg necrotic fraction (r=0.B11, p < 0.001; r = 0.838, |treabmeant grewp this was the case. An explanation of this is = IVIM-paramelers can be used Lo detect
the assessment of  |Healthcare, TR/TE, 5000/64 ms algorithm was the same with thal |p < 0.001; r =-0.095, p=0.691 respectivealy } mentioned in the article. sequential changes in diffusion and perfusion
therapeutic efficacy |Erlamgen, implementead in the Semens IVIM = Mo correlation D* and neclrofic fraction under sorafenib treabment
of sorafenib in HOC | Germany) protobype softwane” = Mo comelation betwesn ADC, TVIM-parameabers = D" has inherent poor SHNR and low precision
Henograft moded and MvD = IVIM cannot diferentiale between intra- and
Conirol growug extracellular water molecule diffusion
= Ondy [ had significanl corredation with MVD (r= = ADC. Dt 2nd 1 obtained by IVIM may be
D0.568; p = 0.009) uselil as nondnvasive Momarkers Mo prediction
» Mo comrelation any of the other IVIM- af HOC responses bo soralenib
parameters and histological parameters
Davelop a methed |2 1.5 7 Geperal PGSE, b =40, 100, |Invive, prostate ' i A bwo step OHEng akgoritham = Sgnificant oorrelation between Dy and = Their findings suppart that O, .and I can be used a5 measures of CD
{2018) o wismalize hypoxfa |Electric Discovery | 200, 300, 400, 500, |cancer in himans cellularity (A2 = 0.46, p < 0.0001) and BVD respactively, in prostate tumars.
in prostate cancer |450 &00, = Significant covrelation between T and blood
magnet with & 32 | 700, B0O, 900, vegsel density (A2 = 044, p < 0.0001)
channel phasad 1000% sfmm2, TR/TE
amay ool [E = 30004594 ms
Medical
]
Tao (2023} |Ta investigate the 3.0T Fast spinm-echo DWI In vivo, anesthesised |/ MADC software Di-exponential = Significant correlation between Yasoulogenic = Their Mindings Suggest hat IVIM parameters can De used as proxys |= Resulls may not generalice to humans in vivo,
correlatian DiEsCoery 750w with periodically mice, imaged in Fitting Mimicry (VM) Foe microvesssl architedture as the dharactertstics of the
petwesn IVIM MAI rotated tumours that And DU {r = -D.569, p = 0.008) Vasculatisre in tumours grown rem injections of
parametears system {GE overlapping parallel davelaped In the = Significant correlation betaeen Microvesss] culutured cefls may be considerably
and microvessel Healthcare) lines with enhanced  |muscle, model of Denaity | MVD) Diffarant from the characheristics of vasoudature
archilecture equipped with a Feconstruction (FSE- |Rhabdamyosaroaima and 0™ [r=0.708, p=0.001) in vivia In humans
in an arthotopic human PROP-DWI) « Significant correlation bebween Pericyte
midrine Four-chanme wikst | B-valoes: 0, 50, 100, Coverage Index [PI) = Relatively small sample size
Moded of call 150, 200, 400, 600, and D* {r=0.716, p=0.001}
rhabiomyasanconsa, 800, = Significant correlation bebween MVD = Higher resolution with smal animal systems
1000, and 2000 and f {r=0.517, p=0.0256) ahould have bean wsed
sfmima = Significant correlation between MVD and
the product O (r=0.509, p=0.02%)
= Significant correlation between PLI and
i PO TR I Nt O 40 = O OUee




Table 2. Information extraction of the articles that reported an evaluation of the Intravoxel Incoherent Motion (IVIM) model - final page [3/3].

Discusalon: value for essessment of milcrastructural

properties
Zhang To distinguish the |3.0 T MR scanmer | Spin echo PGSE EPL  |In vivo, anestiesised TL, T2, Generic bi-expanantial Mtng = Significant correlation bebween D* and NF + IVIM metrics sensitive to histological properties = Imaging performed with & dinical 3T system
(2023) histological (Achieva 3.0T Tx, |With TR=7 10ms, mice, ADC (r=0.327 p=0.016) of the microvasclabure and cell density {e.g., meonsis), an alive animals,
Syltypes of Prilips ) TE=63ms, b=0, 10, |malignant pleural mapping and between D* and MVD (r=0342 p=0L011] in |but high variabillty in the cormelation sign is which gives confidence on the dinical feasibiity
malignant plevral  |using a dedicated |20, Mesathelioma biphasic MSTO-211H celis Seen aces cancer cefl groups af the mapping
mesatFeefiema mouses 30, 20, 100, wenagrafts = Significant correlation Debween I'and nedrotic
[ MPM) and coil with an imner | 200, 400, 600, B0, Fraction (NF}, = Resyulls are highly variable depending an the
characterize diameter af 50 mm| 1000, 1200 s/mm2, but with opposibe signs in eplthefioid NCI-H2326 camcer cell type and require confirmation
the development of | [(DG-MUC3-H300-| NEX=6 [r=0.4D4 p=0.002)
refated histelogicad |AP, anid Biphasic MSTO-211H celis (r=-
Features, Chenguang Medical 0.507,p=0.001)
Technotogies Co., = Shgnificant correlation bebween I and
LT, Microvessel Density (MWD,
Shanghal, China}, but with opposite signs in epithelicid RCI-H226
(r=0.437 p=0.001)
and biphasic MSTO-211H Calks [r=-
0.554,p<0.001)
= Significank correlation between Iand umour
wolume [TV],
but with epposibe signs in epithefipid NCI-H226
(r=0.445 p=0.004)
End biphasic MSTD-211H celis (r=-
0.560,p=0.009)
= Significant correlation between D and fumour
Kie (2022) |To evaluate liver 3T MR scanner Single-shot PESE In vivo, anesthesised DCE, T2* |Generic bi-exponential Mttng D= and ' correlated with hepatocyte Ki-67 « IVIM metrics sensitlve to histological propesties related to fver + Histology was mat perfarmed on the mice that
pErTusion {MEGNETOM EFI: Sprague-Dawley Rals, indices {r = _xD001_0.588 ta _x0001_0.915; p < |regrowth in nepatedomy, were imaged with MR
changes and their Prisma, Siemens) |TR/TE 230074 ms; [rmaged ames A5} a refevant treatment aption
affedt on liver with an eight- FOW 120x98 mm2 ; |hepatedomy And hepatocyte diameter (r = w0001 _0.555 10 [(in several types of cancers
regereration (LR) cianmned 12 slices, Imam-thick; x0001_0.792; p < .03} {€.9., metastasis resackion |
afler partial rat-specific coil 120x28 matrix;
mapatectomy (PH) reconstruched vowed
using gize 0. 5x0.5x3 mm3;
Irraioooed acCeleration fackord;
Incoherent motion b =0, 10, 20, 30, 50,
{IVIM} and T2* 75, 100, 300,
mappimg 500, BOO sfmm2Z ;
I & rab anaeial T 17 €




Table 3. Information extraction of the articles that reported an evaluation of the Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors model — continues on the next

page [1/2].

Fitting characteristics, including
compartment models

Comparisons with ground truth data

Discussion: value for assessment of
microstructural properties

Bonet- Lin=artze VERDICT |3 T scanner PGSE, b = {90, 500, 1300, 20040, In ving, For conventional VERDICT T AEting procedures compared: Simulation study: = Mo walidation with clinical histological data done in |« Most parameters are repeatable with high correlation
Carne o imiprove fitting (Achieva, Philips| 3000} sfmm, 48 = {23.8/3.9}, Prostate cancer in VERDICT: compared ta = 1. Accelerated microstructure imaging [« At typical noise ievel for clinical this study; only correlation between resuits of both coefficients, AMICD had the highest repeatabiiity
(2019) |speed; comparison |Healthcare, {31,3M11.4), {43.8/23.9), humans » Compubed: f,, f,., B L. |VERDICT-AMICO  |via convex optimization (AMICO) acquisitions, VERDICT-AMICO has lower methods * AMICO much faster; allows parameters to be
VERDICT ws. Best; Netherand | {38.8/18.9} m=, TR/TE = =1 = =, framework. abzplute error than VERDICT = They did bath provide clincially plassible valoes computed directly during the scan, This increases
VERDICT-AMICO s} {24B2/50%, {2482/65%, {2482/90}, « Fixed at set value: d,., * 2. Original nan-linear VERDICT flitting |+ For [, AMICD makas slightly larges errors|based on the used dictionary, elinical feasibility. VERDITT-AMICD reduces processing
{3945/71%, {3349/80} ms Ppeay using Caming (Matlah): terative than VERDICT * VERDICT-AMICD had a higher precision, time by maore than theee orders of magnitude (5.55
aptimization using LM algorithm. = Parametric maps for AMICO appear less noisy than  [s/voxel —> 1.78 ms/voxel).
For VERDICT-AMICO: Clinical study: original VERDICT, for the rest similar parametric maps,|» AMICO fitling depends on dictlanary values selactions;
« The same as for VERDICT, » Similar estimetes VERDICT and VERDICT- [+ VERDICT tends to overestimate [, in comparison  |the regulasization has to be set empirically. Choice of
excapt that deps Is 2lso AMICO for £ and M with nerrral histolegy; this effect decreages if we unfix |these has tn be validated based on histology.
i b kel gt = Significantly higher estimates . and R for | dees = AMICO inherits limitations of criginal VERDICT, which
S RATIEvE. piok Thoesd AMICD, fops Significantly lewer for AMICD is that it does not account for permeability between
anymare = Results of bath are within bisphysically different compartments or for T2 heterogeneity wihtin
piausible range e seme ydae]
= Precision aof fit better for AMICD
Bailey Clinical vatidation of |= For in vlva PGESE, different protocols far fresh Ex ¥lva, both fresh and |Model parameters: ADC Model ftting using LM algorithm. Histology, gualitative comparisom: = [, indicates whether a region belongs ta tumour of = Tensar-sphere model best describes diffusion data in
f2019) VERDICT- SCAnning on and fixed imaging. TR = 2000 ms formalin fixed, = Computed: I, T B L First Mikting with different compartment = Regions of high I, and low ADC lumen space - high vs. law. prostates, which agrees with previous studies. Single-
parametars, and bo |which the mould | ATE = {10/318} ms Resected prostale =1 - = o madels: correspond to regions of high cell fraction » R varies little in this study for tumour and mon oompartment modeds fail when data incledes high b-
assess influence of |is based: 3T » Fresh: b= {9, 148, 334, 594, cancer in humans » Fixed at set value: de = [sotropic balls; unrestricted diffusion on histology tumous: in some other studies this is differsat but in wvalues or varying diffusion times.
a 30 printed patient | MRI {Philips 752} s/mim2 + TENSOr, anisotropic » Regions of low I and high ADC are those they allow de o vary. = A decrease s observed in extraceliular diffusivity and
specific mould. In Achieva, Best, « Fixed : b = {9, B4, 232, 455, 752, = Sphere, Isotrapically restricted daminated by lumen space or low « B does not provide useful informaticn here: does not |an increase in intracellular fraction after fixation, which
addition, The 928} s mmi2 = Watson, group of sticks cedlularity stroma fit well for kots of lumen space. is caussed by water 1055 frem the extracedlular space
COMparison Netherlands) L/B/TE = {30/ 3/45} ms + In regions with lats of lumen space, R » Mo quantitative voxelwise comparison was done with |during fecation. Fixation influences water centent and
batween fresh and » Fresh: b= {30, 120, 478, 1077} Several modets bested: was poorly determined; tended towards the |histology, due to alack of registration accuracy diffusivity, but neither model selection nor modes
lxed samples fromn | = For 2x vivo fmm2 » 1 compartment: conventional DTI largest values aliowed by the fitting. It had [« VERDICT assumes one single cell size within each parameters aaseddatated with tissue structure [Such as
the prostate. D'W-MRI data » Fixed: b = {30, 369, 748, 1465} {tensor) a high uncertainty vaxsls, hawever cells have a distribution of sizes; not |R) are greatly affected by the fixation. They conclude
acguisition: 9.4 |s/mm2 2 compartments: bi-exponential (ball- captured by VERDICT that fcation does nol sedously affect estimates of
T (Agilent Inc., |&/S/TE = {30/10/46} ms ball) VERDICT-based micrastructural parametass and that
Santa Clara, CA,|» Fresh: b = {306, 1222, 2750, = 2 compartments: with spherical correction for flxation is not necessary.
USA] 7638, 14971} symma2 restricted compartment = VERDICT, bt + T2 B madelled as mane-exponential.
+ Fixed: b = {306, 2750, 7638, without vascular compartment {the third)
14971} sfmma - Ball ar sphere functions as the
AMSTE = {50/3/66} ms intracedlular space, with a fixed d,.
= Fresh: b= {51, 202, 808} s/ymm2
= Fixed: b= {51, 455, 1263} s/mm2 Data were fitted voxefwise with max-
LBTE = {50/10/66} ms likelihood approach. Models compared
= Fresh: b= {535, 2139, 8555} with Akaike Information Criteria {ATIC).
£fmim32 Tensor-sphere model had the lowest AIC
= Fixed: b = {535, 2139, B555} in most voxels:
5fmim2 = This one used in the rest of the
AMS/TE = {70/3/B6} ms comparisons.
Duchéme  |Presentation of 2 3T Achieva Double Ditfusion Encoding {DDE) » Biologkcal phantom:  |Model parameters: DDE with anly two [AMICO-fitting was used for VERDICT. Histology guantitative comparisom: = Histalogy was consistent with DDE results; good f, |+ Implementation of DOE sequence on clinical scanner &=
(2020) double diffusion {PhilipsTM, with single shot double spin-echo asparaguses’ stems = Computed: f, T B, L. (@ (=0, 180} Comgartment shapes: # Mo b Ty Gopy were 8l consistent with [and B estimation with high correlation, challenging; limited maximum gradient strength and
encoding MRI Best, The echo-plenar sequence, different * In wivo, 2 sllografts of |d.. mean fow velocity v |{called P-AF) = Intraceliular as spheres necratic and viable areas » B and v are sensitive to nalse. scan Hme should be acceptable; however in this wark it
SEQUENCE ON & Hetherlands) pratocol per specimen: rhabdomyasarcoma in compared ta DDE |» Vascular as sticks » 1. and cell size B were significantly + v exhibits a poor differentiztion betwesn viable and  |is attempted to achieve on a clinical scanner. Resuits
clinical scanner to = ODE on asparagus: b= {0, 0.2, rats with more angles |+ EES as hindered diffusion eswironments |decreased in necrotic ROIs compared with | necrotic tissues, were only weakly affected by using refative angle @ = 0,
analyze 0.B7, 2.0, 3.5; 5.3]- mEfuma, TESTR viahle tssua, » Vasoular componsnt behavicur depends on A, so the 1B0 Instead of multiple angles. This increases ciindcal
mscrestructure and = 3000/164 ms, relative angle p = Maodel fitting yielded a signal that clusel',,- = Ferat diameter |5 used for the hlsm-lngy. use of & single A could be an advantage of DDE aver feasibility,
microvasculature {0, 45; 90, 135, 180}, {0, 1BO}, AMS matched to the measured signal (lor which s a8 measure for cell size. This TODD. Bath behaviours of vasoularity would then give s |* The reason for using different A B to increass
=80/12 ms ASparagus). correlated sgnificantly with the computad B constant contribution ta MR signal. DDE is not meant sensitivity ta cell sizes as the relationship betwesn &
= DOE aft fmowe: B = {0, 0.01, fr =0.53, 0.68). 1o not provide extra information tean TDD, but it does |and the mean squaed ﬂlsplacem&nt of water molacules
0,39, 0.89, 1,58, .46, 3.55} = Stained area fraction s used lor the affer 3 maore acourate model, depends on the size of restricting geamstries: this effect
mEfumd, TRTE = 2000y 108 ms,; histalogy, which is a measure for is referred o in the paper as R0. The proposed DDE
relative angle w ={0, 180}, &6 = intraceliutar fraction, This strongly seguence does not rely on TDD, but rather on the
3213 ms carrelated significantly with £ (r= 0.84, influence of RO at-a constant diffusion tme.
0.a0), = In DDE, two diffusion encoding gradients are
In additicn conventional DWT on consecutively applied with 2 different arientations,
tumoue: separated by a relative angte y. For adjacent gradient
b= {0, 1} ms/pm2, &8 = 27/8 pairs; molecular displacements during encodings are
ms, TR/TE = 2000/55 ms correlated, resulting in 2 high sensitivity to R0, DDE
has therefore been preposed to guantify cell sizes
+= Besides RO, DDE is shown Lo be sensithve o ballistic
flow ocouring in vascular network,
Panagiota |First introduction of |9.4T scanmss PGSE, AFB = {{10, 20, 30, 40}3}. |In vivo, Moded parameters: ADC, IVIM Compartrment shapes: Histology, absofute value comparison: |= VERDICT estimated biophysically reafistic values for |= The key advantage of VERDICT that maks it better
ki (2014) |VERDICT! To {mgitent) {30, 40}/10}} ms, G = [40-400] Colorectal = Computed: I, fpe, B e, = Intracellular as spheres = Because of shrinkage during prepration  |all parameters; they were [arger than those measored (fitting than ADC/IVIM is the possibility for Inclusion of
guantity and map mT/m in 10 stegs for & = 3 ms, G = |adenccarcinemal e the main orientations = EES as isotropic ex-vivo; cell sizes & measured on in histology but that is explainable by the shrinkage.  |signal anisotropy and restricted diffusion {via different
histalogic features {40, B0, 120} mT/m for & = 10 ms. [xenografts in mice of the anisetropic diffusion = Vascular as anisotropic histalogic sections were on average smailer |All parameters were broadly consistent with histology. |compartment shape modets).
of bumors TE = minimum for each A5 tenscr that represents the than those computed by VERDICT. ard arterial spin laballing MEL « Clinical application i difficult due to limited gradient
combination, TR = chosen to vascular component @, @. Tterative optimization procedure for madel [« The fi. got the greatest value ascrited = VERDICT found a significant difference for esch of the|strength available on clinical MR systems
minimize gradient heating effects. + Fixed at sst value: d, = fitting (non-tinear optimization via LM from all fractions. parameters between two cell fines of tumours; while |« No incorporation of exchange bebween compartments
", [ abgorithemj; first fitting owver all voxeds o e Bnd d,,.. were significantly different  |ADC and IVIM did not. in VERDICT
within the tumor ROI averaged, then hetween tumour bypes. « VERDICT had a rmuch batter Gt to the data than = Specific used compartment modeals reguire tuning
fitting for each vaxel, Uses contrained ADLC/TVIM depending on the shape and arrangement of cellular
madel paramelers; o ensure biophysically = Cells are essumed to be perfectly spherical; if they structures. This reguires more study on histolegy to
meaningful values. are not, their redius A Index was overestimated., determine which models fit certain tissues best,
» VERDICT manages to get a good fit to
S i A Caps kD Ao faklo_bbo 8w
Johnston |Evaluate 3.0-T MRI PGSE, b = {90, 500, 1500, 2000, Tn vivo, Model parameters: ADC AMICO-Titting was used for VERDICT. Histological grade differentiation: = Mo difference in image quality for the parametric » Repeatability was excellent for the VERDICT
{2019) pertormance of ystem 3000} sfmm2 with respectively 88  |Prostate cancer in + Camputed: £ foes, @ ® f_ for Gleazon grade 344 was map based on [_and ADC parameters, I0C was =087
parameter [_ic and |{Achieva; ={{23.8/3.9}, {31.3/11.4}, humans significantty higher than for benign/Gieason [« ROC AUC was higher for f: than ADC, lor
compare with ADC | Phifips, Best, V3. 8/23.9}, 1348.3/14.4 ], grade 3+3, while for ADC they were similar |distinguishing Gleasan tumaur grades; but for fees and
the {38.8/18:9}} ms, and TR/TE = # (e and 1 did not show significant It was lawer

Metherlands)

{{2482/50), {2482/65), {2482/90},
{3045/71, {I045/80] ms

differences befwesen those groups
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Bailey Characterize 1.57 PGSE, b = {1000, 2000, 3000, 2500, (In vive, Model paramieters: « ADC: only ball |Three VERDICT aptions madeled for vasc- |« VERDICT moded parameters fell within « Kurtoses and VERDICT models captured the signal 2t |« Astrosticks s not a good descriptor for extracellular
{2018) micrestructuse {MAGNETOM 1500, 800, 400, 200, 100, 500, BDO, |Prostate cancer in = Compubed: B, fe feps, Togee |» INIM! twa EES-iC plausible bolsghczl ranges migh b-walues well, In some woued the complex cpace; BAS did not perform well
using ditferent Awanto, 800, S00% symm2 with respectively  [humans » Fixed at sat valus: compartments, + Astrosticks-Ball-Sphere (ABS) Mode! correlations: VERDICT moded was required to fully capture the + BBS and ABS were similar; they only vary shape of
models Shemens 4/8 = {33.8/24.8, 45.6/33.2, g = . 1 e vascular using  Ball-Ball-Sphere {BES) = The correfation was tested between ADC, |signal; particuiarly variations with diffusion time vascular compenent, due to low vascular fraction might
Healthcare, 52.4/40, 52.6/40.2, 40.6/28.2, ball, extraceliular |» Ball-Astrosticks-Sphere [BAS) K and VERDICT parameters: » These voxels have largest f, in parameter maps, nat matter that much
Erlangen, 31 4/19, 26.2/13.4, 22.B/10, using ball as well |Models compared using AIC. - ADC, ADC,, cofrelated sigaificanity indicating that VERDICT might work better in regions « Kurtesis i5 better abde to capture non-Gaussian
Germany ) 20.2/7.4, 60/24.8, 60y 24.8, 50/24.8, = K BAS performed significantly worse than with dy, e, Fugse with farge {. contribution; they have higher SNR and tehaviour, with a high b, Where kurtosis best explained
50/24.8% mz and TE = {77.2, 04, ABS and BBS. Kurtosis, ABS and BBS - K correlated most strongly with T, |strong time-dependence. data, the VERDICT fit was similar, buk this is 2 more
111.6, 108, 84, 67.6, 56.4, 49.65, performed similarly. BBS was chasen 1o [and more weakly with d,, R complicated mdeel.
44.4, 100.4, 100.4, 90, 90} ms, TR the rest of the analysis. - & ditt not correlate significanty with « Whare VERDITT better sxplained data, there was a
= 3000 ms gither ADC, ar ADC, greater diffusion Bme dependence: this s captured by
thie restricted sphere component in VERDICT.
Panagiota |Demansirate Philips Achieva |PGSE, b = {100, 200, 400, BOO, 1 vive, Modai parameters: ADC INIM. K [AIC computed o compare the madels: Comparizon Lumour vs. bamign: « VERDICT-based cellularity computation dearly + Lower mean sguared error for the VERDICT fit than for
ki (2015) |feasibility of 3-T MRI scanner 1000, 1500, 2000, 2500, 3000} Prostate cancer in = Computad: B, fie Ters fone = K and VERDICT perform skmilarly, so = Differences between tumour  benign indicates tumour regions from banign regiens ADC or IVIM
VERDICT far s/mm2, with respectively A/8 = humans =1 e = Toes slight preferance for K because this has  |regions tested; VERDICT volume fractions |« VERDICT assigns the differences to specific + Kurtosis fits closely, similar to VERDICT
prostate camcer in {{26.6/8.5}, {20.4/11.3}, » Fixed at 588 values: d,,,, only 2 parameters, VERDICT has 3. are all significantly different, piophysical ar histalogical fackors; while ADC and K do |+ Correlation tested bebween ADC, K, IVIM and VERDICT
clindcal satting {31.6/13.5}, {30.7/12.6}, e O e WL Hlpg = e = [n cancerous areas however, VERDICT = N significant change in VERDICT-based |not; they use unspecific metrics, parameters:
{28.1/10.0}, {I5.7/7.6}, ] shows smaller AIC than K indicating that |cell size R between tumour / benign * VERDICT valume fractions of IC and vascular - Megative correlation between {ADC,D,} and f
{33.715.63, {E2.20.1), {2L.2/3.1}) the extra complexity af the model is companent are increased for cancer, which Positive correlatian betwesn {ADC, D¢ 2nd fop,
mes, TR/TE = {{2000/55}, necessary to explain the data corresponds to histological assesment s
{2305/50%, {2731/655, {2517/63}, - K strong positive corredation with f.. negative
{2033/58%, {2000/53}, {2000/49%, with ey
{2000/46 %, {2000/44}} ms
Palombo  |Extend VERDICT te |Philips Achieva |PGSE with ive combinations (b; &; &; [In vive, Model parameters: Clagsic VERDICT  |Fitting via Deep Neural Networks of Comparisen tumour ve. benign: « » The implementation improves the histological fidelity [« The implementation improves the reproducibility of
2023 IrClsde Tor 3-T MRI scanner |TE; TR) of b-values b {in 5/mm 2 ), Prostate Cancer in = Computad: T2vasc/EES, relaxation-VERDICT {fWERDICT), which is |Differences between tumour §/ benign of VERDICT intra-celiular fraction WERDICT a5 it takes into aCogunt Chamges in TE =
relaxation gradient duration &, separation 4, humans T2, T1, R, fg feps Tume = 1 compared to classical VERDICT fitting regions tested . with rVERDICT showing Moreover, It provides new patential Biomarkers of
properties echo time TE and repetition time TR Te = stronger effect sizes than VERDICT compartment-wise T2
{in ms): respectively, {90, 3.9; 23.8; » Fixed at 58t values: d,,..
F0; 2482); (500; 11.4; 31.3; 65; ds MRI-histology correlation: ANOVA

2482}, (1500; 23.9; 43.8; 90;
24823, (2000; 14.4; 34.4; TL;
3945); (3000; 18.9, 38.8; 80;

3349), in three orthogonal directions
using & cardiac coil,

analysis shows that rVERDICT Tic is
associated to Glason grade, improving
results from classical VERDICT. RYERDICT
discriminates 3+4 vs >=d4+3 [p=0.040},
unlike classical VERDICT
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g, MorimvaEsve & Frecimical @ Prechpicalr TRTE = 3000470 ms s Inwiwa, Liver of threa | Model parametnrs: The version of IMPULSED assumes thres compartrments: | Amdmad = Extmates for hepatocyte size are plausibie in humans |« Sinca thes is o mora complicated signat modal, an

M et al, |method esting varian/ Agient = PGSE, & = {10, 40} mx, & = 4 ms, |méce and three = Computed; cell coe # 1. Perfusion (IVIM) is ignored i other applications |+ Histograms of MAI-dorived and histology  [and animals, and similar to kstoiogy in animals mcreased SNA & required for stable fittng.

{2020} |for in viva Cirecinve  horgontal [B = {0, 300, S04, 750, 10003 = Ini wiva, damiter 4 of IMPULSED, With decnpasing tee; IVIM effecs decresse|denved hepatocyte skes from rats ane = Dun to chalienges in co-registration; it was not possible |+ Ondy healthy subjects studied, no oncological cees
mapping 4. FT magnot s/mml Levgr of humans P s wall. The effect of perfusion is remowved by simalar, to perform a vouek-wise cormelaton betweon histodogy oosted yot. Mowewer, this application & still relevant for
hopatocyte size  |[(Aghent, Falo Afm, |« OGSE, £ = {66, 100) Hx with « Fioed 0 o st valon: O mplermenting an approach fram Tacull and Koh: tha & £, hns & lower moan voalue and wider and MRL Ma strict companison possible, only indication. |oncology.

ca) respactvaly A% = ({20015}, model b= fit o IWIM-fres signals, distribution from MRL than hisology. that estimates are easomable = posshie = In this study, the effect of preodo-diffusian is nemoved.
s [iinical : Philips {15/10}1) ms and b = {{0, 300, = 2. Intracellular compoanent: restricted dffusion in |« Pitted o have high precision 850 < 10%.  |* Precision was tested for the parsmabars, whch was However, including presodo-dffusion coefficient a5 an
Achimva 3T sanner |¥00, 750, 1000), [0, 300, 450, holiow sphenes, depend on cell stoe diameter d, de « ML SED-derved  show good good, but & was nok possible b assess systomatic blas  (mdepandent variabie in the fiting model might lead o an
{Amsterdam, EO0} ) sfmmicd, + 3. Extraceliutar comp dy: s approximately agreamant, while IMPULSED-derwved fic are  |@mors, Even mane accurate quantification. This wouwld however
Netheriands) uneacy related to the inverse of the defusion sime e lgwer than histolcgical & f_ is urdemstmated in comparison with histology mCTERe scanning tima.

Chnical; TR/TE = 45007110 ms The used fraquency range I this stedy shows minar s Difficult o cbtain true valves of d. and d,., varations of|* Triscytodommal water exchange & ignoned, which

- _PEEE, AN = T2 ms b = {0, variation in d,. and therefarn B modelled a5 a corstnt, | Humans: 15-30°% are chusrved; can bo decreased by increasing explains the pndemstimation of f,..

250, 50D, 750, 1000} sfmma2 » Hepatooyte sEe estimates are within SN - which typecalty requines longer snning.

= OE5E, TRITE = 4500110 ms; £ = MoaiTtr conri i wlaorthen b T T human plausitie mnges. « Frited cell e represents an average per vouel, lowers

. 3 gorthm - on A

{28, 50 Hz wsh ﬁf"ﬁ = {5340} ms gt Briabistality: Biscioe) vl ebearsn vt T wwvoots | d again has lowest RS0 (~7-9%), highest [senskivity for sssessing changes in cortain bypes af cells;

:_r;; rfnm nlD-ﬂ“II:I.'!"IEI?jJDE;:ISL?EI did not show a significant &, dependanos of ADC] they | PRRCS0D cell-disnbution wauld be better.

-:.l'rnlrnz. AR e - were excluded (< 5%).

Resumng diffuson bmes tes Tangad

Kir Present clinically  |= fn wiro: TRSTE = 4500/104 ms n witro colls Coll sge demeter & hemea | PESE-only based Two compartments: Simulation studyr = fi |15 undenestmated; howewer other studies found that |+ This applcation of IMFULSED does not Use Cosine

{2020) |feasibie Varan/Agilent 47T |= PGSE, AN = 7af12 ms, b= {0, wive bresst cancer |volume weighted maasn o -|ADC = 1. Intracsfiutar difusion modeded by spheres s [MPULSED can measure ool size o and f  |f. correlstes well with ground-troch cell density m oscifating dffusion gradients but copine maduiated
1=PLULSED MRl spectrometer 250, 500, 750, 1000, 1400, 18007 |eenografts m mice som equation in paper. = 1. Extracellular diffusion modedled by constant d__. evan with low SNA; But the dy = not relabie) cimulations. 1t might be a good mndicator, but absolute  [9scilatng frapezoidal diffiesion gradients, which makes i
method { Aegifimn: s’mm2 & [ wivg bresst canoss with low SMRs. accuracy & uncortain. more clinicalty feasibie.

Technologees, Sarta w OGEE F = {35 EO) Mz, AMS = in huemans Computed: fe, du sMaximization of log likelhood with Radan nose, voool s d can on the ather hard be relably estimabed. « Tha most signficant ADC change oocurs befween tee of

Clara, CAj {5L.4/40/9} ms, with b = {{0, 250, wise basks fitting. In witro stodyr Estimation of cell size distribution would bo a ussful 5-30 ms; which is the range used n IMPULSED and

& Andmaiss 47T 500, &0, 1000}, {0, 100, 200, Fithing precissan decreases » IMPULSED dertend celd sine shows a strang |extension of the model ensures that & has a good sensiiviiy to cellular

Varian/ Aghant 300} sfmm. If dy, Is froe, so it was fhoad cometatian with measured histology (r = P P T

hortzantal small at a set value .92, p<0.001). - This IMPULSED method performance & nat limited by

animal scanner Resufting diffusion times tae ranged the standard clinscd parameters; so feasible for the dinic

[Agdient fram [5-54] ms In wivo mice: « Differonce VERDICT & IMPULSED: both use multighe

Technaologies ) & Good agresment of mice in vivo as woll, diffusion times, but VERDICT uses canvwentional PGSE with

= Mumans: Fhilips bart slightly undersstmates d. fhigher b-values, resuiting in a narmeser range of dffuson

Achiewa 5T scannos timees. In addition, VERDICT oses multiple different TE,
which resuits in biases n ftting due to relawation effects

Jimmg. Skudy tumar Yarian DirectDvve TE = 70 ms; 5 b-vaiues rmanging [0- [In vivo Cell sz doameter s harea |/ Two compartments: Histology, correlation: = Cell size f comolates with hisiology-based cell see & I parametric maps; a sgnificant heterogeneity |5 vishie|

Dudzins  (response using horizontal 4.7 T 1500] s/mm2 at equad logartthmic  |Colon sdenocemonoma |volume weighted mean o - & 1. Intraceliutar dffusion modelsd by sphares & [MPULSED dorved ool soes show o & Tha maan call size o kas o very ow RSD, high precsion|acres tumour megions. Might ba intonesting, for frtum

kietal [IMPULSED magnet {WVartan, Pale |mtorvals i rice o eouation i paper. + 1. Bxtracellular dsffusion modelied by constant d... cormetation (r=0,52, p=0. 004} wath histalogy-for 3 realistic SNR snodinds.

{2030} ARka, Califorria, USK) |=PGSE, A= {12, 4BF ms, S=4 derived cél soes = IMPULSED danved d ks able to detect cel st

= OGSE, f= (80, 100} Hz, &/ = Compuied: fo; dy de Signals fram each fismor vooel were ewalurtod toosoe s [MPULSED derhved celdl sires show negative|decreases associated with treatment-induced T cali = The gradient strength used hers s not schievable on
{28430 ms which fitting worked best; constant ADC w3 ADC warying |comelation with T ol fractan [r=-0.64, p |infilation any chiriml MR scanner, too high

with tuer (Hime dependency ). For low SNR vounls, the = 0.0001) & In other studses, it was tested on clinical MR sconner;
Resufing diffusion times t. mnged constant ADC-model was often prefermed. For voxes thie sensitivity to dic ks then low. However, measuramant
from [2.5-46.7] ms. fawaunng the other model, the DY signal fi to genorate ot cell size d b5 stll possible.

parametric mags with tha fMmincon furction m Matiab:

tased on manimzaton of Iog Meelihood with Rican

noe, vousl wise et fiting.

« For only 2 few voxels (< 1%} cellular paramebors could

Ak by mioblend b be o bned o ey e bin A

Jiang &pplcation of varanDrecinve TE = 67 m= In wiva « Computed: cell s PESE-only based Two Ccompartments: Histology, correlation: s fpasonabls cof soe estimates & iater ewchange s asumod to be negligibée n this

f2027) |IMFULSED in vivo |horizontad 4.7 Tesla |« PESE, AJS = {4874} ms, b= Calon cancers in mics | diameter = hare a valeme |ADC & 1. Intracefiutar dffusion modelsd by sphores. & IMPULSED dorved callolsnty shows & Callutarity corredabes strongly and mone than ADC; miodel. 1n this mathod PGSE mesursmants with long b
o estimate [T magnet {4,500, 1000, 1500, 20007 sfmma weighted mean d - sea « 2. Extracollular diffusion modefied by constant d,a:. comuiation with histology derteed ceflulanty | howewer underestimaticn are used; causes this model more: losly to be affected by
micrestructurad {Waranlnc., Palo Ala, |« OGSE, = {50, 104, 1507} Hz,wih aquation in paper -, fi, du (p=0.B1, p=0.0001) & Intracellolar wolume fractions are underestimations; water exchange than with only S55E. This process plays
Features CAl respectivaly b = {0, 500, 1000, ., the siope of thed, Using Isgourvesit in MATLAS, s This was a stronger comalaton than wsth leads bo vnderestimation of cellulariies as wel a rmle m the cellularity utnderestomation

1500, 20007, {0, 130, 650, 1000, with respect to the ADC [p=-0.69, p=0.03), suggesting that s e to chaflenges in co-registrabon beteeen histology  |sCapiary perfusion was ignored in this study; because
13393, {0, 150, 300, 450, 600} frequancy £ [ 30 IMPULSED = mare spacfic indicator of and MRI; voxel-wise correlation between histology and  |perfusion fraction of Hssues & < << dffusion fraction of
s/mm2, AfS = {28020} ms tumour coll dorissy o colluirty MR not possbie. This should be done n future studies.  |tssues; f tumor angioginess is large / non-negiigibie; th
based on Eq. from paper, PESESOGSE sequence should ba modified te acguire
Fesulting diffuson times e mnged 20 sumour call density » IMFULSEC-dernved ceil sizes are stightty perfusan-frea MR sgnals by mserting PESE filter with
from [1.7-48] ms., larger than the histalogy-denwad cell sizes, small b-vatue at beginning of seguenca,
which is explained oy shrinkage doe to

L Investigate Waran 4.7 Tesla ML |Thres sepamte parts: = Simuiaton study Model prrametors: Twa PESE-based Lsgcurve fit funcon MATLAGE. Simulstion studyr = Incorporaton of OGSE measurements incroases » Rmalstic dinicl gradient strengths wens used m this

(2027} |influenos of spectromater {Fal = Tin the intracelular cochange & in witre muring « Coll 5ize d, fe, diey Placy metheds: & [MPULSED and PGSE 1 accuraiely seradnity to intacelluiar diffusion, iIncluding addtional  |study
trancytoiemmal Aha, California,usa) |Ifetime was estmated with a erytrhaleukemia cancor |d,s & PESE_[- that fits estimate o, while PGSE_1 is only informartson than FESE; @ mome comprehensive way o it (s Differenoe VERDICT and DMPULSEDT VERDICT nequines
Water on corstant gradient eperimant, § = |oelis di 25 Tourth accuratawhan T, > 280 m=x, and 7 bobwesn |di and ool size d pror nowledge of o and de.: to minamime fitting ermos;
esumates of 10 ms, A ranging from [20-426] ms paramater 10-16 pm = dy can be relahly estimated by IMPULSED whan ¢ 5 [challenging for this mehod to massure ceil soe and
miCTETuCtu e In 30 incroements. » PESE 111 Hued = Far both IMPULSED and PSSE_H, precision|appropriaste, = > 100, and SNA is sufficent > 59 miracedular diffusastty at the same tima, doe o lang
from PGSE or » PGSE- § = 4 ms, & = {10, 2§, 55, walue d, decranses drastically with decreasing SMR |4 Fated oofl =ize o = relanvely insansitivits to diffusian times of PGSE
1HPULSED 24} ms, TRY/TE = 1500/60 ms 11 * Al three methods significently transcytolemmal water exchange and & masonabby * Transcytolommal warter echange shouwld be incorporated
mathods ‘gradient strenghts varying linesrny undarestimated i estimated by IMPULSED n quarttative dfusion models; @u_in should be fit as

fram [0-20] g/cm » Transcytalemnal water echange has large | 4, s signficantly undarestimated wall; would be mare accurate and & refevant parameter a5
= IMFULSED: TRJTE = 3500/80 ms, inflence on fited £, & decreases rapdhy wall
% brwalues evorily distrabuted ower [H with a smadier 7,
!ﬂ?ﬂplé::":ﬁ = a4 e # g esfimates reasonabie for IMPLLSED
- DGSE: Al = 3026 ms, f = ot welire-A R
{40, 40} Hz = [MPULSED and PGSE I had acourate
Resuting in diffusion times $.,
fietings of d, mdependent of permeability
Faspleg foorm. [452) s = fic Is again underestmated for fast
trarsoytolemmal water oxchange
= ‘While d,; s shghtly mom susceptibte to
wator exchange, sl can be reiably
estimated with IMPULSED if ewchange ks not
oo fast

Wu Investigate 1.0-T MR1 scanner TRSTE = S000/148 ms, A8 = 30/10|In wivo Model parameters: PESE-only based Sae git; i MATLAR. Uses I=qourve fit Histodogical iemowr grades = Correlation betwesn estimated fr and histoiogical & Clularty had very high AUC ROC 096, fi. 0.93

(2022} feambiity [Skyra, Ssemers mis Prostate canoer in & Computed: cell sme d, fi, |ADC [waliplab T laTaly mizasures i found, for both histology and simukaton s Cod e and o, lower, > 074 still
THPLILSED Heakhcare) & PSE: b = {400, 800, 1300} hmans. d & Highar G- §, and cefiulanty higher, lower |chudy

mapping for clnic

simm

® ESE: Ff = {17, 33} Hz with
respoctrvely b = £040, 300, 1200%,
{3c4g, 660} } sfmm

Resufing in diffuson times e
ranging from [7.8-26.7] ms

-
dy. Is fxed at set valon

cellutersy = f. f d ™ 100

g, mone diffusion Hme dependency

= fic shaws singificant difference between
benign ard G5 2-5, ¢ sgnficant diference
beteeen GG 1 and 2-5. Cellulanty between
benign, GE1, GE2-5,

Mistology, correlation:

= Cormpiation betwenn eshmated £ and
hastoiogical f. (=083, p<0.001)

= Canfirmed by ssmulabion results (r=0.97,

me 0 001 L

& Mo spatiafy matched comparison bebwesn IMPULSED
resulits and histology possible; only bicpsy done of small
area of turnor, while MR = of whaole fumour regson.

« Limiting factor & avallabée diffusion ime range; not
faasble for clinic bemuse gradient magniudes ano
unachamwable. in this study, however bested with limited
diffusion time range and ¢ still works




ng
(2022}

Table 4. Information extraction of the articles that reported an evaluation of the Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) model - final

page [2/2].

Introduce rew
jount model that
\nCorporates
W sCharge
and comgiare with
original
IMELILSED

TRITE = IS00/80 ms, ¥ b-values
evenly detnbuted cwer |O-2004)
wimm2

- PGSE: A5 = 5304 mis

- DGSE: A = 325 ms, F =
{40, B0} Hz
Resufting in diffusion times Gy
ranging from [1.12%-53] ms

= Simudation study
= In witro morine
erytrhalegkemia carcer
colis

Computed model
pammoters:

» Coll cize d, T, d,.

dI.'

« Ll membrane
parmeahility P

& Ty pre-exchanga Hetime
of intracellufar water: to
evaluam whather echange
i= fast or slow in
companson with tee

Models companed
o

IMPULSED
companed with josnt
model; bhated an
IMPULSED but
Incarparates
transcytolemmal
water exchanga

Fitting characteristics, including compariment
madels

* For tyer < Sms water exchange was ignored; sama
maodel a5 IMPULSED s used

& For ke > 30 ms; the modifed Korger model was wsed
that inciudes both restcted dffusion and axchange
between compartmients.

= Typically Ta > 30 ms, so if dffusion time is shorter
than that, the water sxchange is nngligibie

s Modal now descnbes two NoR-Gaussian compartments
undergoing exchange, taking into scoount effect of
restricted diffusion ond cell size. (modified Karger
madel]

HMatiab code available on git; uses lsgurvefit,

Comparisons with ground truth data

Simuiation study
s The joini-model derved T, and Py, are
highdy linsarly comeiatod with ground truth
r=0.9% and 958 with p=i_01

& Ty I5 highly cormelated with Cli-based Ta.
bt significantly smaliar

* Averagn fitted d wadues of joint-model ane
very close o ground truth and improves wrt
onginal IMPULSED. Thed |s hess affacted by
the fast water aachange

& Underestimaticn af f is significanthy
reouced wikh Joint model.

In vitro study:
g values pre clpee 10 groaing trith

= Jaint medat signficanty reduces undemmstimation of fi.
in comparison with IMPULSED

s Jaint modal improves quantification of d, whan Te & 50-
100, Jont modei and [IMPULSED both provide accurane
estimates of water exchange when =, > 100 ms.

s Echimaron of o can well be done with DGSE
maasuremants with shart £ because low mflusnca then
of water exchanga

= i may ba determined by FE5E measurements with
lonig tae and farge h-values] with high intfueno of waber
cxchange

« More affect of watar exchange i 7 Socreases or ta
INCreases

+ T and Pp provide complamantary ntormanon; they are
highly linearty cormelated weth ground truth simulation and
in witro oell stody. Hawewar, they wene still biased
camparnd with absslute graund truth.

+ Jaint made! still uses same scan Hime as IMPLLSED,
which ig possible mn dirscal scanners with relatiely fast
BCqguistions

« Poseitle differences (n relasation properties betwesn
mtra- and extracaliular spaces are ignoned, like @ most
campartmentaioed models




Table 5. Other techniques that were reported in two or less of the included articles. The used technique is specified in the second column, underlined and bold.

uantitative comparisons with histology or simulated
data

Discusshon: valoe for estimation of
microstrectural properties

Xur (2021 ) | Framewori for mapsing oall & I witro; = -Cytomatry 5 3 goeneral = Simuotabon study ¥ A probabiity destrbution of: Two compartmonts: Sirmeiation 2 = Digtribotion of coll sioe mappings match = Manping cedl e destribotion instead of single values par
stze distributons wthoat Varanfagient framawek; data was wsad froma|s In viro cedls a ¢l sime diamoter o (volume- & Intraceiiuvar: sphares, with = Mean distibution of all pammetes apart from B match ground truth wall viewel, k= oseful for detinguishing different ool papulations.
azsuming any paramedric 47T MRL previcoshy aquined study by ¥u |+ In vheo breast cancer waighted in shep 1) call size diameter  and d, simulated ground truth waell & Bamed on IMPLLSED acqusiian data, which was snsumd
disribution. The MEI- spactromeder ot 2. on IMPULSED. xenagrats in mice = iy (volume-waighted in step 1) = Extracedular: spin packets, = SNR has strong impact on fiting precsions for all distributions: ‘to be clinically feasible. Should st be tested for different
Cytometry framewcck & non-| (agilent s In wivo broast cancer in o pach has s own Bma- » Two-shep approach Improves estmates of of ond de acquistton methods, bat with same MRl -Cytomatry
Gaussian and Technologies, TRSTE = 4506/104 ms humars -l dapendent diffusion coafficient frampwork.
compartmentalized into two | Santa Clara, CAY [« FGSE, &0 = ™M/Ii ms, b= dy = d+R."f Nota sngle | In witro calfis:
comparmments {intra- and & Anfmals: 47T |40, 250, 500, 750, 1000, 1400, » £, called v, in the paper . |5 thus used. » Cnrmelatian between estimated o and histological d for s Infiuences of fres water fraction and cell membrane
extracalluiar), VaranfAglient  |1B800} gfmm2 Transcytolemmal mcchange & | cukured cells in vitro. Mowever o of dstribution of & cormelates permeabilty nead further Investgation,

horzontal small |« DGSE, F = (2%, 50} Hz, A = igriore. [ + i cannat be rellably estimated with tha currently used
animal scanner ({51 4/40/9) mu, with b = {{0, dffusion times, unless higher freguencies can be used,
{agilent 250, 500, 780, 10007, {0, 100, Two stap fitting approach: In wive snimais: MRE-cytomatry works better (enhanced fithng preckion) as
Technologies) 200; 300 sfmm. « 1, Uses nonnegatrve least * Good agreament cstimated d (and its o) with histoiogy. o smpitfied version by removal of e from the fthing
= Mamaps: squanes analysis parametess
Philips Achieva  |Resulting diffusion Bmes by « Z. Uses dictionary with all In wive brosst cancer in humans:
3T scanner ranged from [3-54] ms. passile io-and ec signal » Mo direct comparisan with histopathalogy possibie yat,

farms, and ther correspontding | * Onfy compared IMPULSED nesults: resuds suggest that MRI-

waigth, This equation i fit to Cytomptry might be mare robust and lecs serstive to partal

the data, After fating, the woluma effect. Estimated cell sizes are highly correlated (r =

voctor s spit into 2 matrces: 083, p < 0.02),

one for ic ond ona for ec.

inshap 11 B, de determined;

Instep 2; cell dzed, de

dhetaringd

Maranja  |Irvestigate IT magnet Uses anisctroqic, versstile b- In v, Diffusian Tansor Distnbutions (D7D} |A set of 200 diffusion tensom 1= Comparnison cancer vs. healthy and carcinoma typesr # Paramaetric maps slow quaitative and & Tha DTO-derived maan celf size E[Dise] may provide

f2021) muitidimensional diffusion |{Discoveny tensors, instaad of b-values: Branst cancer in humans are estimated for each woxed, randomly generated and the = Carcar and normal tssus was signifiantly different according |guantitatse evaluation of the compasitan more consistent and reproducible results than convantional
MHAL (MDD MRI) for MET 50 gradent waweforms targeting cantaning mformation on tha sze, liketihood & aswessed via NNLS |to all DTO-based metrics, axcept for the V] Dws) and fuo and crentabonal order of heatthy tesue and |DWI, as DTD maging @kes nor-Gaussan dffusion into
microstrocturad GEHeathcare, |37 isofropic bnear encoding shape and onentation of a microsoopic | fitting; this is epeated and the | {accoctated with densely packed isotropic oelis). tumours. acoount
craracterization of breast Miwaukesa, WL} [dinecdions, and 43 spharicalky giffusion patiom, using the MDD data. | largest-weight solutions ane & For purely irvasive and miked fvasive and in sito carcinomas, |* Valdation based an tumaur co-megistened & Canoprs ane charactortoed by o ElE:n__! and how E:DA: L
cancer, in clinical satting. pncoded Fignals Statstical descriptars of the DTD ame | kept; svertually frming tha | onby fu; and fue wene signfilcantly diferent hetnlogical speicrnens is reguired. i higher e (eiongated cells). Normal tissue edibited
Framewory retses on novel TR/TE = 5000-2700/98 ms, b = computed, the mean E ard variances |DTD. miore fags
N Fu - grmibpat Wy {0, 100, 700, 1400, 2000} W of: # Bins were set manually, which might limit generalization

simmai, & The tersar size Dw The E T p———
represents coreentional mean
diffuswity, the ¥ the varance of oell
densities ower the vorel soade.
= The tersor shape Tg The E
presents microeoopic ankotmopy; O for
spherical, 1 for comphebely aloogated
& The orientation dimensions of the
DTO.
Sie-shape space is binned o
separate signal fractans:
# Elongated cals fu.,
& Ingfropic environmonts wah low
diffusmity Fueg
# Lamge sotropic dffusion
envircnments with high diffusmeity £,

Xiong Asspss ahility of Restricted |3 T whiole-body |[PGSE, TRFTE = 4800862 ms,  |In vive, ADC, K s O, voluma fraction and D, dffusion | The difusion coefficients are all | Tumowr grade differcatiation: & RSI-C, is a significant indicator for tumor [« ARSI is 3 highly eficient technigoe, weth scan time lesc

{2022} scanner [wR b= {0, 10, 20, 30, S0, 80, 100, |Rectal cancer i homans coofficient of restricted diffusion foond at set valves, which were|* More restricted dffusion C & found in high grade twmors; no |grades; has a high diagnostic ability than & min
model for rectal twmar FB0, Shanghad |150, 200, 40, 600, 530, 150, compartment, infracellular regions thearetically and differenoe for the other compartments., = B5]1 has a supenor performance than ADC  (# Migh b-values are required for R31, poorer image gualty.
grading. It is non-Gaussan United Imaging (2000} s/mm2, & Ca volume fraction and Ds diffusion | experimentally detsrmined_ » £y has capahility of discrimining grades with sigreficart and K More optimined b-value selection would be good.
and compartmentoiized. Hene, | Healthcars, ey | L Thiz was done to prewent o & & cambination with IVTH coud ba osatul, & Tha restricted compartment mag carresponds ta high b
three compartments are used | Shanghal, Frting of RSI was based on only campartmert, masthy exctracelular owerfEting. = ADC and K showed no significant dfference betwoen grades ulilizing the law b-values as well, to give value map b=2000 5/mma.

{see Eq. in paper): restrcied, (China) & of tha b-values: (0, 400, &30, = C3 volume fraction and D dffasion * RSI-C; had the highast dagnostic abilty, with an ALROC ewan more diagnostic mformation
hindered, free 800, 1500, 2000} 5fmm. roofficient of froe defusion, nat fumnr 0.7%53 » R51-C; and ©; do not provide specific
spadific descriptions on tumor callulanty, not dinectly
related to tumor grading
Vamvin Evaluation of the rellabilsy of | 3.0-T SignaHDxt |PESE, TRITE = SO0E/65-72 ms, |In wive, A ESI-MAI cellulan®y Index, basad on - | Instosd of ubliring one Gleason | Termowr gmd-e differontiztiom & Baped on RS51-#8A1 ceflularity index, if & & By using ths voxel-bated approach, a very large sample
{2016} Bestricted Spectrum MEI Scanner b= {0, 125 375, 1000% Frostate cancer in fumans score cellularty maps Grade for a whole tumaur ROL, |+ RSI-MRI celiulanty index detdnguished benign from passible 1o detect variation of Gleason Grade [sze (> 2700 vorels) is achieved, even thoagh not many
bt predict {GeneraiElectric) [sfmma2 in this study the hstopathology | ncreasingly malignant prostate cancer with peix10-® wihin o singie tumouar panenks wene mciuced,
varianoe with histoiogical of the tumour is analyzed and |« Trand of higher mean RSE-MRI callulzsty with incrassang grado # R5I-MAL may be promiging for planning of focae
trmaur grade graded at vaxed lewel; in order thenepautic procedunes, becauss it aliows identification of
to privde more accurate areas with the mest agrassive dissase
representatian of imtratmoar
botarnopoaity

Yamada |Determing usefuiness of g- & 7.0 TeslalT) PESE, TRITE = 3000/25% ms, Ex wiva, farmalin-fooad K Dizplacement dsmbution orofiles for | in-house safreamns Mistology, correlation: = Signficant carreations of g-space & Significant cormefation found betwean [P0, K, mean

{2015} far MR imaging wnit A8 = 1855 ms, b = {0, 57, |speciriens of humans with each wanel: = Cormelaticn between mean displacement and nuchkeas- parameters and hstological parametars deplacement) and the histological grades
esophageal cancer analysis (BiaSpec TOFLE; (387, 874, 1554 2427 498 esophage! sguamous ool = Mpan dsplcement in @m, at 0.425 oyoplasmic ratio {r=0.793, p < 0,001} = g-space MA Imaging is very sersitive to

Bruker ATED, Ga0E, 7163} sfmmd, \carcincama ‘e tha FwHM + Comelatran between Py and nuclesr-cytoplasmic mto changas in tissue microstructures = Sty is performed ex vive, formalin feed
Biotain,Effingen |comesponding to g = {0, 119, s Probabity for zero displocement Fg fr=0_79%, p<0.001) # The mean displacement provides the resl = & very long imaging fime vwas gased bere, of 43 min
. GorTany) 238 A58 4TE, 597, FA7_ A%7, & ELrtosis & # Correlation K and nuclaar-cytoplasmic ratio (r=0.728, p<0,01) |@nge of mestricted diffuson on the = Migh g-values required to wse g-space imaging, with o
IEE 1026} Jem = Cormelation mean displacament and cellulsriy (r=-0LEST, micrometer scale highar gradiens strengths than ciinicad feasible
P00} & Perfusion s not taken inkn accoont in this mathod
& Correlatian Py and cellularity (r=0_885,p<0.00) combening §-space imaging and IVIM might be helpful
& Cnrrelsting 8 snd Fellainety (ol TEY nef) 0015

Senn Deterrning whether g-space  |Climcal. 3.0-T PEEE, TRITE, 5500/94 ms, 32 |Ex viva, formalin-fooed excsed|ADC; K, SEM  |Displacement distribution profiles for | In-house saftwane Histology, correlation: & Tumour celulartty compated with Q51 bad [« (351 has shown o be feassbie on clinical MRI unees

{20159} i works bettar (MRI unt with  |eguidistant b-vasues anging [0~ |human breast tumours each waxel: PWHMM computed sach » Commelatian betwesn 5E FWM and cellutarty {r=-6.513, p < Increasad effect gradient compared with the |because of hardware advanoes, the requerements for tha
than corvertonal DW-MRI ta | maximum £000] s/mmd, correspanding to distributian. Parametric map based on 0.021) othar DW1 tachniques; highar sensmvey to |gradient magnitude cn ba met
estirnate celluiarty gradiant 12 equidistant g-values ranging FWHM farmed. For FPWHM is & Correlation PAMM skewness and cellularty [r=-0.4560, the underlying differences in breast bemaurs

strength of 80 [10.4-855] fom camputed: p<{.0038]
mT/m {Achieva # Skewness s marker for asymmetny
Tu; Fhil-ips of the distribution
Haalthcane) & Madlam @5 markar for the average of
thm chictribafing

Morally To charscEsree tmor Clirkcal 37 b-values = 50,400, 1000 In vivo ADC It maps multiple A0C values 1o Complox dictionary fitiog Apressiveness diff erentindion: - Markers not walidated histobogicalhy - Tha approach memowes the noed T write analytical

{2023) microstracture aocording Magnatom sl =hul-base callular radies-&f, whno = Al mérrostrcturl marers distnguishad to ground truth hishdogesal miodels of the signal
o proliferathie capacity and Wmro Soemeans resolotion 1.88 = 1.98 x § mm; |chordoma oall volume fraction +f, ADC values ane companed Sepmman momless prodferative emoos counterparts, but they show clinkcal utilthy - However, & s dfficit to implernent 25 it required ad hoc
predict loeal Scannar TE = §&6-83 m=: ISBLC) cell difushity DF to values cbtained from Mante: | [Highflow Ki-&7) Marte Carle smulations
recurmence through TR = E600- GEO0 ms; appanant cellularity rhoapp Carlo

a = 50; GRAPPA factor = 3; Simulations Survival
parametess from hmad coll with 32 channels - & signature made af @ combination of
comventional DW-MRI af Al microstrectural parsmaters
baseling, Can predict survivad following radiotherapy
i skuil-basa chordoma (S8
manerts
s —prpen (DTS e




Table 6. Relaxometry-based techniques, which were all reported in two or less of the included articles. The used method is specified in the second column, underlined and bold.

Author (year) Study goal,
Used maoded

MRI scanner

Salient diffusion protocel

Tissue condithon Extra model specifics Fitting mathods

Quantitative results

Discussion: value for estimation of
microstructural properties

Chatterjes & |Validzte prostate 3-T * PGSE, TE = {57, 70, 150, I wive, For three tisgus Vomel-by-woxel Dasis, fitting |Histofogy, differances: = Drpstate tssue compositian did not « Cancers were characterized by an
Antic {2022) |microstructure measured [multiparametric 200} ms, TR = 5000 ms, b=  |Prostate cancer in compartments, stroma; equation from paper using [+ Measured prostate tssue composition did not differ  |significantly differ when evaluated with HM MRI |increased epithelium and decreased umen.
by hybrid MEI (Ingenia; 10, 150, 750, 1500} s/mm2 humans epithellum and lemen: nonlinear least-squares significantly betwesn HM-MRI and histology: for strama |or histelogy. Cancer was predicted in any voxel with &
multidimensional MRI |Philips Healthcare) |In combination with: « Volume fraction v method, Matiab, p = 0.23, epithellum p = 0.08, umen p = 0LE. = Corredation and agreement of HM MAI with fractional valume of lumen of = 20%, and
(HM-MBI},_with = Standard clinical « T2 refaxation = Far benign tissue, HM MRI overestimated luimen histology was excellent, with high correlations.  |fractional volume of epithelium > 40%,
quantitative histologic multigarametric sequances, = ADHC volime (p = 0,01} and underestimatad epthelium (p = |» Tested with both Lin's COC and Pearsan, = ALIC RO for distinguishing bebween
avakiation incloding T2-weighted and DCE- 0.01) In comparisan with histology pecause CCC 2lso measures e degree of prostate cancer and benign prostate tesue
MRI carresondence between bwo measures based on |was high for HM MRI: epithelium 095,
Histology, correlation: covariatien and correspondence. lurmen 0.94,
# Dyerall Pearson's correlation coefficient was grester |« Bland-Altman analysis showed good accuracy |« Previous work has shoiwn that volume
than 0.9, and high preclsion fractions of stroma, spithelium, and lumen
« Lin's Concordance Correlation Coefficient {CCC) = In ex viva farmalin fixed histology, the size of  |are better indicators of prostate cancer than
demanstrated that there was excellent agreement the prostate s reduced by 15%) this could affect |caBularity is.
betwesn histology and HM MEIL: strama CCC = 0.81, wolume fractions, especially lumen - since lumen
epitheium CCC = 0,90, lumen CCC = 0.87. Tukds |2aks oul
Chatterjes Validate prosiate 3 T Fhilips Ingenia |» PGSE, TE = {57, 70, 150, In wivo, For thrae tissue Vowel-by-voxel basis, fitting (Pathologist’s interpretation va. HM-MRI: » Tiasue composition measured with HM-MRI = ALC ROC for dfferentiation cancer vs.
{2022) micrastruciure measured (or Achieva ME 200} ms, TR = 5000 ms, b =  |Prostate cancer in compartments, strema, equation from paper using |+ Measured Bssue compositions were similar for matches very closely with resulks fram benign based on epithelium from HM-MRAI
oy hybsrid SCanmer {0, 150, 750, 1500} s/mm32 humans epithelium and lemen: nanlingar least-squares epithelum and lumen valume. HM-MAI measures are  |consensus of three expert pathalogests was 087, pathologists 0,969,
multidimensional-MRI In combination with: & ‘Volume fraction V methoed,; Matiab. within range of individual measures from each « For lumen velums, AUC ROC was 0847
(HM-MRI}) by Ccomparing » Standard clinical = T2 refaxation patholagist, lor HM-MRI, 0.768 for pathologists,
with results from mitigarametric sequences, = ADC = The between methods agreement is on par with the
pathobgists' including T2-weighted and DCE- patholagists' agreement » Pathologists' assessment was dong an
intepretation of MRI farmalin fixed prostate tssue ex vivo!
hacbnsotbanlnm:: clidac Enewsn i Horabing sadiirar sowg ol mencbobs
Thang Walidation ol &x wive 3-T whole-body = DR-CS1; PGSE, TR = 5000 m, |Ex v, Three distinct DR-CSI Signal modeksd as a Histology, correlstion: » A gignificant positive correlation was found » For this technique, no prior information
{2020) diffusion-relaxation  |scanner (Prisma; |sTE = {60, 80, 100, 120} ms  |[Fresh (within 15-35 |signal components were  |[summetion of continuous « All three DR-CSI fractions were positively correlated  |between 2ll DR-CSI signal component fractions  |like the number of components ar & fied
correlation spectrum  (Slemens, Erangen,and lor each TE, b = {0, 400, [minutes) prostate consistentty idgentified; gxpanential decay functions, (with the histalogical valume (ractions based on a3 linear |and the histopathology area fractions cefl size radius af the Intraceliuias
imaging (DR-CSI) for  |Germany) B00, 1500} 5/mma2 cancer specimens of [thus the entire T2-D based on both T2 and D, mikad-afects model (all p < 0.001) = The found corralations were stronger for DR-  |compoenant (such as with VERDICT) is
measurement of In combination with: humans spectral space was divided |Eased on the found o g 5. lomhenm p = 0.74, (OS5I than far ADC required.
microsbructural tissus = "A high-resolution T2- inko three regions: 1., fy, I |spectrum, signal component |s o va. e @ = 0.80 « ‘Validation in vivo is reguired, this was only ex  |» Unlike HM-MRI, no predetemmined tssoe
compartments using waighted MRI ssquence” « Comparison with fraction maps are generated |a . va. [, ¢ = 0.67 vive diffusion coefficients were required for this
histopatholbgy. Instead histological paramebers: by integrating the spectral * ADC was comelated With §yweim {p=-0.68,p= mindel.
of asauming a predefined RERER Sk G peaks on the vosehwise T2-D| . o043 and fu., {p = 0,42, p = 0.002}, but not with
numbear ol spectea, If there are three P
compartments, & peaks, thres signal
spectrum ks quantified. component fractions are
Based on T2 relaxation derived.
and dilfusion.
Daf (2023) |Assess the performance |3T Skemens Prisma |« In vive DR-CSI: PGSE EFI In wivo kidney « 5 different DR-CSI ADC- (Regularised spectral (iing  |Histology, classification: « Spectral signal fraction maps praovide insight on|s 5 regiens of interest were arbitrariby

af i vive
diffusion rélaxation

correlation
spectroscopic imaging

[DR-CSI) in grading
Clear cell renal cadl
Carcinama

{CERNC)

{TE: 51,/80/110/140/180/ 200
ms; b-valus:

O/ 150/400,/800,/1 200/ 1500
sfmm32 }}

« (ther anatomical seguences
« ADC and T2 mapping

= DCE MRI

Iimaging

T2 spectra were identilied.
Maps of signal fraction of
each spactrum werg
produced voxel-by-wvoxesl
(Va, Wb, Vi, ¥d, Ve),

« Spectra signal fractions
were Cimpared acriss
cCRNC grades,; as obltamed
by visual histopathobogical
analysis of HE images
abtained from toEl o
partal nephrectamy

based on the MERA loolbox,
using a 30 x 30 grid of ADC-
T2 values and cross-subject
spectral standardisation b
mitigate nter-subject
differences in the pasitan of
spectval peaks

« Vb differenciates low grade {G1-G2) from high grade
(G3-G4) with AUC 0.801

« Vb differenciates G1 from G2-G4 with AUC 0,796

» Best grade disctrimination: modal with Vb, Vi,
tumeur size and age (ALC = 0.927)

Histology, correlations:

= Wb cormefabes with tumawr grade (F = 0.553, p <
0.001)
= Vi corralates with tumaur grade {r = -0.378, p =
0.001)

e agres Sivemess of the tumaur, ..'J'E"il'lg
carredated with grade

» Spectral signal fractian enable non-irvasive
grading of the emour, especially Il coupled o
additional clinical variables Eke tumowr sire

identified, corresponding to tumar, Necrasis,
cysts, normat cortex and normal meduliz

= These were used to caboulate 5
characteristics spectra

» Different results would have besn
pbtained ¥ the number and characteristics
of the companents had besn definad
aifferantsy




Table 7. Techniques to link histology maps to mp-MRI using Al, which were all reported in two or less of the included articles. The used method is specified in the second column,

Author (year)

Sun (2018)

underlined and bold.

Study goal,
Used model

Chsantitestively estimate
prostate csll density fnom
multiparametricMAI
data, using machine
learning models
Histolagical data and
mpMAR] data ans
registerad at a voxel
]

MRI scanmer

ITSemend Tite
Tirm - rmachine
[Siernens HMedical
Solutions, Erlangen,
Gernay]

Salient diffusion
protocol

e OWL: b = {50, 400,
BOO, 1200} afmm2, A =
36.4 ms,

In comivination with

» T2-weighted MRI

= DICE-MRI

Tisae
condition
A MET
= [ wivd,
Privs Lade
CEMOET in
hmans

= Ex vivo,
Prostate
)
Speimens
of hurrans
it Tior the
oo~
resgistration
of histology

al Ry

Extras model specifica Fitting methods

Cell density In 107
callgf i, ine habing
balh cancenus and
narmal cells

Foor model] training, woxels were treated
&% independent samples, with feature
wactors existing from mpMREI data and
the outcorme Being the cell densiy from
histalogic data

Three regiession models are el
miditivariale adaptive régréssion spline
(MARS), polynondalregression PR} and
generalised addithe model (EAM)

Quantitative results

Model accuracy:

Performance of the three regression models was
measured by mdot mean sguaced emmor {RMSE) i 107
cellsfmima

= MARS 1.07 +- 0.05

* PR 1L.O7 +- 0.06

s GAM 1,06 +- 0,06

Small difference, bt significant. GAM had best
performancs,

Discussion: valus for estimation of microstructural DiscusSsion:

properties

+ Frastate call demnaily can quanitativaly be estimated
fram high-quality co-regikierad hstological data, wsing
regression models.

& T st performing modsl wae the GAM,

Other advantages
Mither Lmitstinne
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